\(\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

\(VT=\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\)

\(=\frac{ab}{ab+\left(a+b+c\right)c}+\frac{ac}{ac+\left(a+b+c\right)b}+\frac{bc}{bc+\left(a+b+c\right)a}\)

\(=\frac{ab}{\left(b+c\right)\left(c+a\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Cần chứng minh \(\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow a^2b+a^2c+ab^2+ac^2+b^2c+bc^2\ge6abc\)

BĐT cuối luôn đúng theo AM-GM

16 tháng 10 2019

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\)     (1)

Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)

Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)

Thay vào -> dpcm

17 tháng 10 2019

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng BĐT Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c

Chúc bạn học tốt !!!

1 tháng 6 2019

Áp dụng bđt AM-GM :

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{a^2+1}{\left(a^2+1\right)\cdot4}}=1\)

Tương tự ta có : 

\(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)

Cộng từng vế ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{a^2+b^2+c^2+3}{4}\ge3\)

Áp dụng bđt quen thuộc : \(a^2+b^2+c^2\ge ab+bc+ac=3\)

Khi đó : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{3+3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 6 2019

bạn làm sai rồi . Khi \(a^2+b^2+c^2\ge3\) bạn chuyển vế thì nó không cùng dấu với bất đẳng thức

25 tháng 3 2018

Bài này sử dụng Cô-si ngược dấu:

\(\frac{a^3}{a^2+ab+b^2}=\frac{a.\left(a^2+ab+b^2\right)-ab\left(a+b\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)

có: \(\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{ab\left(a+b\right)}{2ab+ab}=\frac{a+b}{3}\)

=> \(-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge-\frac{ab\left(a+b\right)}{2ab+ab}=-\frac{a+b}{3}\)

=> \(\frac{a^3}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\)

Chứng minh tương tự:

=> \(A\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{a+b+c}{3}\)

20 tháng 8 2018

Cho a,b, c là các số thực dương. CMR:

a3a2+ab+b2 +b3b2+bc+c2 +c3c2+ac+a2 a+b+c3 

ta có:

\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)

tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

áp dụng bđt cô si ta có:

\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)

7 tháng 12 2020

bạn dung bđt a+b >= 2 căn ab ( cô si )  nhé

cách là ghép từng cặp ở vế trái lại

7 tháng 12 2020

 Ta có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)

\(=\frac{1}{2}\left(\frac{ab}{c}+\frac{bc}{a}\right)+\frac{1}{2}\left(\frac{bc}{a}+\frac{ca}{b}\right)+\frac{1}{2}\left(\frac{ca}{b}+\frac{ab}{c}\right)\)

\(\ge\frac{1}{2}\cdot2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}+\frac{1}{2}\cdot2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}+\frac{1}{2}\cdot2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}\) (Cauchy)

\(=\frac{1}{2}\cdot2b+\frac{1}{2}\cdot2c+\frac{1}{2}\cdot2a\)

\(=a+b+c\)

Dấu "=" xảy ra khi: a = b = c

30 tháng 9 2016

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)