Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\Rightarrow abc=b^3\)
Ta có: \(\frac{a^3-2b^3+c^3}{a+b+c}=\frac{a^3+b^3+c^3-3c^3}{a+b+c}=\frac{a^3+b^3+c^3-3abc}{a+b+c}\)
Xét: \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow\frac{a^3-2b^3+c^3}{a+b+c}=a^2+b^2+c^2-ab-bc-ac\) là 1 số nguyên (đpcm)
1/a +1/b +1/c = 0=> 1/a +1/b= 1/-c
=> 1/(a+ b)^3 = 1/(-c)^3
=> 1/ a^3+ 3a^2b+ 3ab^2+ b^3 = 1/-c^3
=> 1/a+ 1/b^3+ 1/c^3= 3/ -a^2b- ab^2
= -3/ ab(-c)= 3/abc
Do phương trình \(ax^2+bx+c\)vô nghiệm nên ta có:
\(b^2-4ac< 0\)
\(\Leftrightarrow4ac>b^2\)
Mà \(b>a>0\)
\(\Rightarrow c>0\)
Giả sử \(\frac{a+b+c}{b-a}>3\) \(\left(1\right)\)
\(\Leftrightarrow a+b+c>3b-3a\)
\(\Leftrightarrow4a+c>2b\)
Lại có: \(\left(4a+c\right)^2\ge16ac>4b^2\)
\(\Rightarrow4a+c>2b\)
Suy ra (1) đúng.
Vậy \(\frac{a+b+c}{b-a}>3\)
Lời giải:
Vì $1=a^2+b^2+c^2$ nên:
\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}=\frac{a^2+b^2+c^2}{a^2+b^2}+\frac{a^2+b^2+c^2}{b^2+c^2}+\frac{a^2+b^2+c^2}{c^2+a^2}\)
\(=3+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)
\(\leq 3+\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (theo BĐT AM-GM)
\(=3+\frac{a^3+b^3+c^3}{2abc}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+a\geq 2a^2; b^3+b\geq 2b^2; c^3+c\geq 2c^2\)
\(\Rightarrow A=\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\leq \frac{a}{2a^2+1}+\frac{b}{2b^2+1}+\frac{c}{2c^2+1}\)
\(\leq \frac{a}{a^2+2a}+\frac{b}{b^2+2b}+\frac{c}{c^2+2c}\)
hay \(A\leq \frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}(1)\)
Vì $abc=1$ nên đặt \((a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})(x,y,z>0)\)
Khi đó:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x})\)
\(=\frac{3}{2}-\frac{1}{2}(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2zy}+\frac{z^2}{z^2+2xz})\)
\(\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2xy+y^2+2zy+z^2+2xz}=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(2)\) (theo BĐT Cauchy-Schwarz)
Từ \((1);(2)\Rightarrow A\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
bai n ay la bai o dau ma dau cung thay nhi
\(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)->\left(x;y;z>0\right)\left(xyz=1\right)\)\(\RightarrowΣ\dfrac{x^3}{x^9+x^3+1}\le1\)
\(\dfrac{x^3}{x^9+x^3+1}\le\dfrac{x^2+1}{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(x^9+2x^8+4x^7+6x^6+6x^5+6x^4+5x^3+4x^2+2x+1\right)}{2\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^9+x^3+\right)}\le0\)
\(\Rightarrow VT\le\dfrac{1}{2}\cdot2=1=VP\)
a=b=c=x=y=z=1
Ta có
\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)
\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)
\(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)
\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)
\(=>=3+\frac{3+3}{2}=6\)
=> dpcm
cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm
(a - b)^2 = a^2 - 2ab + b^2 > 0
(b - c)^2 = b^2 - 2bc + c^2 > 0
(c - a)^2 = c^2 - 2ac + a^2 > 0
=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac
=> 6 > 2ab + 2bc + 2ac
=> 3 > ab + bc + ac (1)
(a - 1)^2 = a^2 - 2a + 1 > 0
(b - 1)^2 = b^2 - 2b + 1 > 0
(c - 1)^2 = c^2 - 2c + 1 > 0
=> a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c
=> 6 > 2a + 2b + 2c
=> 3 > a + b + c và (1)
=> 6 > ab + ac + bc + a + b + c
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Nếu \(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\)
\(\Rightarrow\left(a^3+b^3\right)\left(a+c\right)=\left(a^3+c^3\right)\left(a+b\right)\)
\(\Rightarrow\dfrac{a^3+b^3}{a+b}=\dfrac{a^3+c^3}{a+c}\)
\(\Rightarrow\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=\dfrac{\left(a+c\right)\left(a^2-ac+c^2\right)}{a+c}\)
\(\Rightarrow a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow a^2-ab+b^2-a^2+ac-c^2=0\)
\(\Rightarrow b^2-c^2-ab+ac=0\)
\(\Rightarrow\left(b-c\right)\left(b+c\right)-a\left(b-c\right)=0\)
\(\Rightarrow\left(b-c\right)\left(b+c-a\right)=0\)
Thay a = b + c vào ta được
\(\Rightarrow\left(b-c\right)\left(b+c-b-c\right)=0\)
\(\Rightarrow\left(b-c\right).0=0\)
\(\Rightarrow0=0\) ( Hợp lí )
Vậy \(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\) với a = b + c