K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

- Ta có: \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2=4\left(ab+bc+ca\right)\)

- Vì \(4;\left(a+b+c\right)^2\) là các số chính phương

Nên \(ab+bc+ca\) phải là số chính phương (đpcm).

2 tháng 11 2018

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)

\(=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(b+c\right)+a\left(b+c\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\rightarrow scp\)

31 tháng 10 2020

My Brain:

Đau đầu-Nhức mắt-khó thở-tim đập-chân run...

O.O

31 tháng 10 2020

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)với \(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(2)

Từ (1) và (2) \(\Rightarrow\)Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( đpcm )

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

18 tháng 7 2018

                 \(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=18\)   ( do ab+bc+ca = 9 )

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=18+2.9=36\)

\(\Rightarrow\)\(a+b+c=6\)   ( do a,b,c là các số thực dương)

18 tháng 7 2018

\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(a^2+b^2+c^2=2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(a^2+b^2+c^2-2.\left(ab+bc+ca\right)=0\)( cùng bớt \(a^2+b^2+c^2\)ở cả 2 vế )

\(a^2+b^2+c^2-2.9=0\)

\(a^2+b^2+c^2=18\)

Ta có:

\(\left(a+b+c\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

\(=18+2.\left(ab+bc+ca\right)\)

\(=18+2.9\)

\(=18+18\)

\(=36\)

\(\Rightarrow a+b+c=\sqrt{\left(a+b+c\right)^2}=\sqrt{36}=6\)

Vậy \(a+b+c=6\)

Tham khảo nhé~

3 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz ta có:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\left(a+b+c\right)^2\le9\Rightarrow a+b+c\le3\left(1\right)\)

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le3\left(2\right)\)

Cộng vế với vế của\(\left(1\right),\left(2\right)\)ta được:

\(a+b+c+ab+bc+ca\le3+3=6\left(đpcm\right)\)