Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điện thoại cùi nên chụp hơi mờ, đề này còn thiếu a,,bc>0
đặt ab=x, bc=y, ac=z
suy ra \(x^3+y^3+z^3=3xyz\)
pt thanh nhân tử \(\left(x+y+z\right)\left(x^2+y^2+z^2-xz-xy-yz\right)=0\)
do x,y,z>0suy ra x+y+z>0
nên suy ra \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2xy-2yz=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
suy ra x=y=z
thế vào pt ta có dpcm
Bài 1 : Áp dụng BĐT trong tam giác ta có :
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)
Nhân từng vế BĐT ta được :
\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )
Bài 2 : Theo BĐT Cô - si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)
Theo câu 1 ta lại có :
\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{c}+\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1=VP\)
Áp dụng bđt Bu-nhi-a, ta có
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)
=>\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự, rồi + vào, ta có
A\(\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (ĐPCM)
dấu =xảy ra <=>a=b=c>o
^_^
Tìm trước khi hỏi Câu hỏi của Phan Đình Trường - Toán lớp 8 | Học trực tuyến
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Khi \(a=b=c=1\)