\(\sqrt{a+b+c-2013}+\sqrt{2013\left(ab+bc+ca\right)-abc}=0\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

suy ra a+b +c -2013 = 0 và 2013(ab+bc+ca) -abc =0

suy ra: a+ b +c =2013 và 2013 .(ab +bc +ca )= abc

suy ra: c =2013- (a+ b ) và 1/a + 1/b +1/c = 1/2013 (2)

thay c =2013- (a+ b ) vào ( 2), biến đổi ta tìm đc: ab = 2013(a+b) -20132. Tương tự ta có: bc = 2013(c+b) -20132.

và ac = 2013(c+a) -20132. . Cộng lại ta có: ab +bc + ca = 2013. 2. (a+b+c) -3.20132=-20132

suy ra: abc = -20133. Từ đó ta tính được hai trong ba số a,b,c bằng 2013 và số còn lại = -2013

P = 1/20132013

15 tháng 7 2019

\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)

=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>a=-b hoặc a=-c hoặc b=-c (1)

=>a=1 hoăc b=1 hoặc c=1 (2)

từ 1 và 2 => Q=1

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

Y
20 tháng 5 2019

gt \(\Rightarrow\left\{{}\begin{matrix}b\left(a^2+2ac+c^2\right)+ac\left(a+c\right)+b^2\left(a+c\right)=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+c\right)\left[b\left(a+c\right)+ac+b^2\right]=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\\a^{2013}+b^{2013}+c^{2013}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=0\Rightarrow a^{2013}+b^{2013}=0\\b+c=0\Rightarrow b^{2013}+c^{2013}=0\\a+c=0\Rightarrow a^{2013}+c^{2013}=0\end{matrix}\right.\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow Q=1\)

25 tháng 8 2019

1b/

Áp dụng BĐT Cô-si :
\(\sqrt{\frac{b+c}{a}}\le\frac{\frac{b+c}{a}+1}{2}=\frac{\frac{a+b+c}{a}}{2}=\frac{a+b+c}{2a}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự:

\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng theo vế ta được :

\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" không xảy ra nên \(VT>2\).

2a/ Chắc là tính GT của \(x+y\).

\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)

Do vai trò \(x,y\) là như nhau nên thiết lập tương tự ta có :

\(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)

Cộng theo vế 2 pt ta được :

\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

Vậy....

25 tháng 8 2019

2b/

Đặt \(A=5a^2+15ab-b^2\)\(B=3a+b\)

Ta có \(B^2=\left(3a+b\right)^2=9a^2+6ab+b^2\)

Lấy \(A+B^2=5a^2+15a-b^2+9a^2+6ab+b^2\)

\(A+B^2=14a^2+21ab\)

\(A+B^2=7\left(2a+3ab\right)⋮7\)

\(A⋮7\) ( vì \(A⋮49\) ) nên \(B^2⋮7\)

Vì 7 nguyên tố nên \(B⋮7\) ( đpcm )

13 tháng 7 2018

B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)

Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)

cộng vế theo vế ta được: \(x+y=-x-y\)

\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)

\(\Leftrightarrow x^{2013}+y^{2013}=0\)

13 tháng 7 2018

a,Ta có x =...

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)

x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)

x = 2

sau đó thay x=2 vào A nhé.

A=2014 !!!

NV
5 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left(a^{2013}+b^{2013}\right)\left(b^{2013}+c^{2013}\right)\left(c^{2013}+a^{2013}\right)=0\)

\(\Rightarrow P=\frac{17}{25}\)

- Bạn làm được bài này chưa bạn?

3 tháng 7 2018

xin bài này , 5 phút sau làm