\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3-B=\left(a-\frac{a}{1+b^2}\right)+\left(b-\frac{b}{1+c^2}\right)+\left(c-\frac{c}{1+a^2}\right)=\frac{b^2}{1+b^2}+\frac{c^2}{1+c^2}+\frac{a^2}{1+a^2}\le\frac{b^2}{2b}+\frac{c^2}{2c}+\frac{a^2}{2a}=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

=> \(B\ge\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

Y
26 tháng 4 2019

\(B=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}+\frac{b\left(c^2+1\right)-bc^2}{c^2+1}+\frac{c\left(a^2+1\right)-ca^2}{c^2+1}\)

\(\Leftrightarrow B=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)

\(\Leftrightarrow B=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)

+ \(b^2+1\ge2b\forall b\)

\(\Rightarrow\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

+ Tương tự ta cm đc :

\(\frac{bc^2}{c^2+1}\le\frac{bc}{2}\) . Dấu "=" xảy ra \(\Leftrightarrow c=1\)

\(\frac{ca^2}{a^2+1}\le\frac{ca}{2}\). Dấu '=" xảy ra \(\Leftrightarrow a=1\)

Do đó : \(\frac{ab^2}{a^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\le\frac{ab+bc+ca}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Do đó : \(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\le\frac{ab+bc+ca}{2}\le\frac{3}{2}\)

\(\Leftrightarrow-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\ge-\frac{3}{2}\)

\(\Leftrightarrow B=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)

\(\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

18 tháng 7 2020

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)

+) cm: \(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

\(\frac{1}{b^2+1}\ge1-\frac{b}{2}\)

\(\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

Cộng theo vế: 

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

17 tháng 1 2017

Dùng súng lục: "siêu tôc thần sầu" không đủ công lực tiếp nhận

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\left(\frac{a}{a}+\frac{b}{b}+\frac{c}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\\ \)

 nhân phân phối bình thường ra thôi : \(t+\frac{1}{t}\ge2\)khi t>0 đẳng thức khi t=1

Áp vào trên => VT>=(1+1+1)+(2+2+2)=9

thay a+b+c=6 =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{6}=\frac{3}{2}\) =>dpcm

đẳng thúc khi t=1=> a/b=b/c=a/c=> a=b=c 

a+b+c=6=> a=b=c=2

8 tháng 8 2016

1) Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)  :

Ta có : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

10 tháng 11 2018

Cosi ngược dấu

1 tháng 5 2020

Giả sử \(a\ge b\ge c\)

Ta có:\(\frac{a+b}{ab+c^2}+\frac{b+c}{bc+a^2}+\frac{c+a}{ca+b^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{ac+bc-ab-c^2}{c\left(ab+c^2\right)}+\frac{ab+ac-bc-a^2}{\left(bc+a^2\right)a}+\frac{cb+ab-ca-b^2}{b\left(ca+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}+\frac{\left(c-b\right)\left(b-a\right)}{b\left(ca+b^2\right)}\le0\)

Ta có:\(\left(c-b\right)\left(b-a\right)\ge0;\left(b-a\right)\left(a-c\right)\le0;\left(a-c\right)\left(c-b\right)\le0\)

\(\Rightarrow\frac{\left(c-b\right)\left(c-a\right)}{b\left(ca+b^2\right)}\le\frac{\left(c-b\right)\left(c-a\right)}{c\left(ab+c^2\right)}\)

\(\Rightarrow LHS\le\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(c-b\right)\left(b-a\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}\)

\(=\frac{-\left(c-b\right)^2}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)c}\le0\)

\(\Rightarrowđpcm\)

NV
13 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\) ; \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)

Cộng vế với vế:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=6\)

Dấu "=" xảy ra khi \(a=b=c=2\)

17 tháng 3 2018

a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì

 \(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.

d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c

e,Xét hiệu :

\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\)  => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.

=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM

6 tháng 4 2017

1 bai thoi cung dc