\(^3\)+b\(^3\)+c
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

6 tháng 12 2020

Bài làm

Ta có : a3 + b3 + c3 = 3abc

<=> ( a3 + b3 ) + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )[ ( a + b )2 - ( a + b )c + c2 ] - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Vì a, b, c dương => a + b + c > 0 => a + b + c = 0 vô lí

Xét a2 + b2 + c2 - ab - bc - ac = 0

<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)

=> \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(\frac{a}{a}-1\right)+\left(\frac{b}{b}-1\right)+\left(\frac{c}{c}-1\right)\)

\(=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)\)

\(=0\)

25 tháng 9 2017

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0

<=> \(\left[{}\begin{matrix}a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\end{matrix}\right.\)

TH1: a + b + c = 0

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

TH2: a = b = c

A = 2.2.2 = 8

2 tháng 11 2016

Do \(a,b,c\) là các số dương suy ra:

\(a>0;b>0;c>0\)

Suy ra: \(a+b+c>0\)

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

Do \(a+b+c>0\)

Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Suy ra: \(a-b=0;b-c=0\)\(c-a=0\)

Suy ra: \(a=b=c\)

Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)

Vậy ...

 

 

2 tháng 11 2016

Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)

19 tháng 1 2018

a,ta có: \(a^3+b^3+c^3=3abc\)

<=>\(a^3+b^3+c^3-3abc=0\)

<=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)2\left(a^2-ab+b^2-ac-bc+c^2\right)=0\)

<=>\(\left(a+b+c\right)\left(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right)=0\)

=>a=b,a=c,b=c

=>a=b=c

thay a=b=c vào P ta đc

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

12 tháng 4 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(tự nhân lại rồi phân tích)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+)Xét a+b+c=0\(\Rightarrow P=\dfrac{b+a}{b}\cdot\dfrac{c+b}{c}\cdot\dfrac{a+c}{a}=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=-1\)

+Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=2\cdot2\cdot2=8\)

NV
8 tháng 1 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\end{matrix}\right.\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(M=\dfrac{\left(a+b\right)}{b}.\dfrac{\left(b+c\right)}{c}.\dfrac{\left(a+c\right)}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{-abc}{abc}=-1\)

TH2: \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow a=b=c\)

\(M=\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)=2.2.2=8\)

7 tháng 2 2021

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Khi đó \(A=2^3=8\)

Nếu \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

Thay vào ta được:

\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-abc}{abc}=-1\)

Vậy A = 8 hoặc A = -1

6 tháng 5 2017

bài này xài karamata là đẹp nhất nè nhanh gọn lẹ mà ko bt bn học chưa

6 tháng 5 2017

Ahaha :D giỡn xíu lớp 8 có khi AM-HM còn chưa học :3, bài này với bn phải xài khai triển Abel ;))

\(Q=\frac{1}{c+1}+\frac{ab+abc-c-1}{\left ( a+1 \right )\left ( b+1 \right )\left ( c+1 \right )}=\frac{1}{c+1}+\frac{ab-1}{\left ( a+1 \right )\left ( b+1 \right )}\)

\(=\frac{1}{c+1}+\frac{a}{a+1}+\frac{b}{b+1}-1=\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\)

Dự đoán dấu "=" rơi khi \(a=b-1=c-2=1\) nên c/m

\(\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\geq \frac{5}{12}\)

\(\Leftrightarrow \left ( \frac{a}{a+1}-\frac{1}{2} \right )+\left ( \frac{b}{b+1}-\frac{2}{3} \right )+\left ( \frac{3}{4}-\frac{c}{c+1} \right )\geq 0\)

\(\Leftrightarrow \frac{a-1}{2a+2}+\frac{b-2}{3b+3}+\frac{3-c}{4c+4}\geq 0\)

\(\Leftrightarrow \left ( 3-c \right )\left ( \frac{1}{4c+4}-\frac{1}{3b+3} \right )+\left ( 3-c+b-2 \right )\left ( \frac{1}{3b+3}-\frac{1}{2a+2} \right )+\left ( 3-c+b-2+a-1 \right )\frac{1}{2a+2}\geq 0\)

\(\Leftrightarrow \frac{\left ( c-3 \right )\left ( 4c-3b+1 \right )}{12\left ( b+1 \right )\left ( c+1 \right )}+\frac{\left ( b+1-c \right )\left ( 2a-3b-1 \right )}{6\left ( b+1 \right )\left ( a+1 \right )}+\frac{a+b-c}{2a+2}\geq 0\)

Hơi xấu nhỉ nhưng xong rồi đó :)