K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Ta có : \(a^2+2b+3=a^2+1+2b+2\ge2a+2b+2=2\left(a+c+1\right)\)

\(b^2+2c+3=b^2+1+2c+2\ge2b+2c+2=2\left(b+c+1\right)\)

\(c^2+2a+3=c^2+1+2a+2\ge2c+2a+2=2\left(c+a+1\right)\)

Suy ra \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Tương đương \(\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\)

Đặt \(M=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta được : \(M=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

\(\ge\frac{\left(a+b+c+3\right)^2}{\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)

Do \(\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)=a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+3\left(a+b+c\right)+\frac{9}{2}=\frac{1}{2}\left(a+b+c+3\right)^2\)

Từ đó \(M\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}.2=1\)

\(< =>\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(đpcm\right)\)

Bài toán hoàn tất . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

23 tháng 10 2017

Ta có:

\(\left(1-a^2\right)\left(1-b\right)>0\)

\(\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\left(1\right)\)

(Vì \(0< a,b< 1\))

Tương tự ta có: 

\(\hept{\begin{cases}1+b^2c>b^3+c^3\left(2\right)\\a+c^2a>c^3+a^3\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(2\left(a^3+b^3+c^3\right)< 3+a^2b+b^2c+c^2a\)

23 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)

\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)

\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)

6 tháng 4 2021

Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :

\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1

12 tháng 12 2016

ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)

\(\left(a+2b\right)^2\le3.3c^2=9c^2\)\(a+2b\le3c\)

lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

dấu = xảyra khi.... a+2b2=3c2(:v)

13 tháng 12 2016

cảm ơn bạn haha

5 tháng 9 2016

đề sai upp làm gì ?

5 tháng 9 2016

đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi

22 tháng 10 2020

Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

Tương tự: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)};\)\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{c}{abc+bc+c}+\frac{1}{bc+c+1}+\frac{bc}{abc^2+abc+bc}\right)\)

\(=\frac{1}{2}\left(\frac{c}{bc+c+1}+\frac{1}{bc+c+1}+\frac{bc}{bc+c+1}\right)=\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = c = 1