\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

a)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

=\(\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{c}+\dfrac{c}{a}+\dfrac{c}{b}\)

=\(1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

=3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

áp dụng BĐT cô si ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

cmtt ta có \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\); \(\dfrac{a}{c}+\dfrac{c}{a}\ge2\)

=> 3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge9\)

=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)

a)Áp dụng bđt AM-GM cho 3 số không âm ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

TT\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta có:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\left(đpcm\right)\)

b)\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\)

Svac-xo:

\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Lại có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(tự cm)

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

23 tháng 4 2017

c) Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{\left(1+1+1\right)^2}{A+B+C}=\dfrac{9}{A+B+C}\)

Dấu "=" xảy ra khi và chỉ khi\(\dfrac{1}{A}=\dfrac{1}{B}=\dfrac{1}{C}\)

23 tháng 4 2017

a,

(a+ b)(\(\frac{1}{a}\)+\(\frac{1}{b}\)) =1+\(\frac{a}{b}\)+\(\frac{b}{a}\)+1 =2+\(\frac{a}{b}\)+\(\frac{b}{a}\)>=4    {vì\(\frac{a}{b}\)+\(\frac{b}{a}\)>=2 theo bất đẳng thức cô-si }.dau"="xay ra khi va  chi khi a=b

b,

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+1+b/a+b/c+1+c/a+c/b

=3+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))+(\(\frac{a}{c}\)+c/a)>=3+2+2+2=9

đầu"="xảy ra khi và chỉ khi a=b=c                                 {>= có nghĩa là lớn hơn hoặc bằng}

19 tháng 4 2018

a) theo định lý côsi :

\(\dfrac{a}{b}\)+\(\dfrac{b}{a}\)luôn >=2 với mọi a, b , a.b > 0

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

23 tháng 9 2017

a)Theo bất đẳng thức cauchy:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Dấu "=" xảy ra khi: \(a=b\)

Ta có điều phải chứng minh

b)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Ta có điều phải chứng minh

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 1:

Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)

Áp dụng BĐT AM-GM cho các số dương:

\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)

\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)

\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 2:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)

\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)

\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Cộng theo vế và rút gọn:

\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)

\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=1$