Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhau nên chọn a>0
TH1: b<0;c<0
\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)
TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
Áp dụng BĐT Cauchy , ta có : \(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)
Tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)(2) ; \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
Cộng (1) , (2) và (3) theo vế ta được \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow}a+b+c=0\) (vô lí vì trái với giả thiết bài ra )
Vậy ta có điều phải chứng minh.
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
ta co(:a+b)/c+(b+c)/a+(a+c)/b=a/c+c/a+a/b+b...
theo bdt cauchy,ta co
a/c+c/a>=2
b/c+c/b>=2
a/b+b/a>=2
vay a/c+a/b+b/a+b/c+c/a+c/b>=6(dpcm)
dau "="say ra khi a=b=c=1