\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Hình như đề sai, theo mik là nó lớn hơn bằng 3/2 nhé (ko biết đúng ko)

\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}=\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\)

Do a,b,c là 3 số thực dương nên áp dụng BĐT Cauchy Schwarz cho 3 phân số:

\(\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{\left(a+b+c\right)^2}{ab^2c+bc^2a+ca^2b+a+b+c}\)

\(=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+\left(a+b+c\right)}=\frac{9}{3abc+3}\)(Thay a+b+c=3)

Lại có: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)(BĐT Cauchy cho 3 số)

\(\Rightarrow\frac{9}{3abc+3}\ge\frac{9}{6}=\frac{3}{2}\Rightarrow\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{3}{2}\)

\(\Rightarrow\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge\frac{3}{2}.\)

25 tháng 3 2020

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

26 tháng 3 2020

Chéc khó nhỉ

7 tháng 4 2019

Do a ; b ; c \(\ge1>0\) , áp dụng BĐT Cô - si cho 2 số , ta được :

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

=> BĐT được c/m

Áp dụng BĐT trên vào bài toán , ta có :

\(\frac{1}{2a-1}+1\ge\frac{4}{2a-1+1}=\frac{2}{a}\left(1\right)\)

Tương tự : \(\frac{1}{2b-1}+1\ge\frac{2}{b};\frac{1}{2c-1}+1\ge\frac{2}{c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\left(3\right)\)

Tiếp tục áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ( đã c/m ) , ta có :

\(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\left(4\right)\)

Từ ( 3 ) ; ( 4 ) \(\Rightarrow\) đpcm

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2a-1=1\\2b-1=1\\2c-1=1;a=b=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)

Vậy ...

19 tháng 8 2019

Lời giải :

\(P=\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\)

\(P=\frac{1}{9}\cdot\left(\frac{9}{a+b+b}+\frac{9}{b+c+c}+\frac{9}{c+a+a}\right)\)

Áp dụng bđt Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)ta có :

\(P\le\frac{1}{9}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{b}+\frac{2}{c}+\frac{1}{c}+\frac{2}{a}\right)\)

\(=\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(=\frac{1}{3}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{3}\cdot9=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

19 tháng 8 2019

Theo Cauchy: \(\frac{1}{a+2b}=\frac{1}{a+b+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3\)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy..

13 tháng 12 2017

ta có \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)

thay b vào\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}\)

                                                  \(=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+6ac}{2ac}=4\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

14 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{\left(a+2\right)+\left(a+2\right)+\left(b+2\right)}+\frac{1}{\left(b+2\right)+\left(b+2\right)+\left(c+2\right)}+\frac{1}{\left(c+2\right)+\left(c+2\right)+\left(a+2\right)}\)

\(\le\frac{1}{9}\left(\frac{2}{a+2}+\frac{1}{b+2}\right)+\frac{1}{9}\left(\frac{2}{b+2}+\frac{1}{c+2}\right)+\frac{1}{9}\left(\frac{2}{c+2}+\frac{1}{a+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)

Dễ dàng cm BĐT \(\frac{1}{x+1}+\frac{1}{y+1}\ge\frac{2}{1+\sqrt{xy}}\)

\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{1}{2}\left(\frac{1}{1+\frac{a}{2}}+\frac{1}{1+\frac{b}{2}}+\frac{1}{1+\frac{c}{2}}\right)\)

\(\le\frac{1}{2}.\frac{3}{1+\sqrt[3]{\frac{abc}{8}}}=\frac{3}{4}\Rightarrow P\le\frac{1}{4}\)

Xảy ra khi \(a=b=c=2\)

15 tháng 7 2017

À viết ngược dấu BĐT phụ r` :v

\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) mới đúng nhé :v

\(\Leftrightarrow\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x+1\right)\left(y+1\right)\left(1+\sqrt{xy}\right)}\le0\) 

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c