Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phạm Minh Quang Vũ Minh Tuấn kudo shinichi Lê Thị Thục Hiền Akai Haruma Nguyễn Huy Thắng Nguyễn Thị Diễm Quỳnh Băng Băng 2k6 giúp với ạ mình cần gấp lắm
Em nghĩ cần thêm đk a, b, c là các số thực dương
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0
BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)
\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)
\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)
\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)
Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)
Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)
\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)
Ta có đpcm.
Đẳng thức xảy ra khi a = b = c = 1
Is that true?
\(\Leftrightarrow\frac{5a}{5a+b}+\frac{5b}{5b+c}+\frac{5c}{5c+a}\le\frac{5}{2}\)
\(\Leftrightarrow\frac{b}{5a+b}+\frac{c}{5b+c}+\frac{a}{5c+a}\ge\frac{1}{2}\)
Ta có \(VT=\frac{a^2}{a^2+5ac}+\frac{b^2}{b^2+5ab}+\frac{c^2}{c^2+5bc}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cách khác:
Áp dụng BĐT Cô-si cho các số dương ta có:
$\frac{a^2}{b}+b\geq 2a$
$\frac{b^2}{c}+c\geq 2b$
$\frac{c^2}{a}+a\geq 2c$
Cộng theo vế và thu gọn ta được:
$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Lời giải:
Áp dụng BĐT Cô-si cho các số thực dương ta có:
$\frac{ab}{c}+\frac{bc}{a}\geq 2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b$
$\frac{ab}{c}+\frac{ca}{b}\geq 2a$
$\frac{bc}{a}+\frac{ca}{b}\geq 2c$
Cộng theo vế và thu gọn ta có:
$\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a-b}{b}-\frac{a-b}{c}+\frac{c-a}{a}-\frac{c-a}{c}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Hay: \(\frac{\left(a-b\right)\left(c-b\right)}{bc}+\frac{\left(c-a\right)^2}{ca}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Tiếp tục khai triển và thu gọn ta được:
\(\Leftrightarrow b\left(c-a\right)^2\left(b^2+ab+bc\right)\ge a\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\left(b-ac\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng hay bài toán được chứng minh xong.
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{a+ab+1}{ab+a+1}=1\)
\(VT=\frac{\left(5a+c\right)^2}{\left(b+c\right)\left(5a+c\right)}+\frac{\left(6b\right)^2}{6b\left(a+c\right)}+\frac{\left(5c+a\right)^2}{\left(a+b\right)\left(5c+a\right)}\)
\(VT\ge\frac{\left(5a+c+6b+5c+a\right)^2}{5ab+5ac+bc+c^2+6ab+6bc+5ac+5bc+a^2+ab}\)
\(VT\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+12ab+12bc+10ac}\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+a^2+b^2+b^2+c^2+10ab+10bc+10ac}\)
\(VT\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+6\left(ab+bc+ca\right)}\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=9\)
Dấu "=" xảy ra khi \(a=b=c\)