\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

Bổ đề :\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si ta có:

 \(x+y+z\ge3\sqrt[3]{xyz};\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}}=9\) 

Dấu "=" xảy ra ⇔ x=y=z

Ta có:\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{9}.\dfrac{9}{a+3b+2c}\le\dfrac{ab}{9}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)

Tương tự ta có:\(\dfrac{bc}{b+3c+2a}\le\dfrac{bc}{9}\left(\dfrac{1}{b+a}+\dfrac{1}{c+a}+\dfrac{1}{2c}\right)\)

                         \(\dfrac{ca}{c+3a+2b}\le\dfrac{ca}{9}.\left(\dfrac{1}{c+b}+\dfrac{1}{a+b}+\dfrac{1}{2a}\right)\)

Cộng vế với vế ta có:

\(A\le\dfrac{1}{9}.\left(\dfrac{ab+bc}{a+c}+\dfrac{cb+ac}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(=\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}.\left(6+\dfrac{6}{3}\right)=1\)

Dấu "=" xảy ra ⇔ a=b=c=2

Vậy Max A=1⇔ a=b=c=2

6 tháng 8 2021

bn ơi bn còn cách làm nào khác ko

 

2 tháng 7 2020

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

2 tháng 7 2020

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)

\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)

Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)

Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

10 tháng 7 2017

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

10 tháng 7 2017

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Sử dụng bất đẳng thức COSI quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{a+b+a+c}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

\(=\frac{1}{16\left(a+b\right)}+\frac{1}{16\left(a+c\right)}+\frac{1}{8\left(b+c\right)}\)

Làm tương tự đối với 2 biểu thức kia ta dc P\(\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2017}{4}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{3}{4034}\)

17 tháng 8 2020

dùng Bất Đẳng Thức Cauchy chứng minh: với các số dương x;y;z;t 

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\le\frac{16}{x+y+z+t}\)

dấu "=" xảy ra khi x=y=z=t áp dụng vào bài toán ta có

\(\frac{1}{2a+3b+3c}=\frac{1}{16}\cdot\frac{16}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

từ đó tìm được maxP=502,25 dấu "=" xảy ra khi \(a=b=c=\frac{3}{4034}\)

4 tháng 3 2019

Áp dụng BĐT Svarxơ:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\)\(=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}\)\(=\dfrac{36}{a+2b+3c}\)

CMTT: \(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}\ge\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}\ge\dfrac{36}{3a+b+2c}\)

Cộng vế theo vế, ta có: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=36F\)

Có: \(ab+bc+ca=3abc\)

Vì a,b,c>0 nên chia cả 2 vế cho abc:

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=3\)

\(\Rightarrow36F\le18\Leftrightarrow F\le\dfrac{1}{2}\)

Vậy Fmin\(=\dfrac{1}{2}\Leftrightarrow a=b=c=1\)

4 tháng 3 2019

Có trong câu hỏi tt nha

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

Tương tự:

\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)

Cộng theo vế:

\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)

Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)

\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Đặt vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)

Hoàn toàn TT:

\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)

\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)

Cộng theo vế:

\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)

\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)

16 tháng 5 2018

C/m BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

Áp dụng BĐT Sơ-vác-sơ:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{x+y+z}\)

Ta có: \(9\dfrac{ab}{a+3b+2c}=\dfrac{9ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\left(1\right)\)

CM tương tự

\(\dfrac{9bc}{b+3c+2a}\le\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{b}{2}\left(2\right)\)

\(\dfrac{9ca}{c+3a+2b}\le\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\left(3\right)\)

Cộng vế (1), (2), (3) => đpcm

21 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{ab}{\sqrt{3c+ab}}=\dfrac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

24 tháng 5 2018

tại sao dấu = xảy ra khi a=b=c=1

vui