Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )
\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1
Do giả thiết abc=1abc=1 nên
\dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc
Đặt x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc
\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz≥23.
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)
Tương tự:
\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)
Cộng theo vế:
\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)
Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Lời giải:
Đặt vế trái là $A$
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)
Hoàn toàn TT:
\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)
\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)
Cộng theo vế:
\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)
\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{9}{3a}+\frac{4}{2b}+\frac{1}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}=\frac{36}{3a+2b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Trước hết, ta chứng minh được \(\forall m,n,p\in R;x,y,z>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Thật vậy: \(\forall m,n\in R;x,y>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\left(2\right)\)
\(\Leftrightarrow\frac{m^2y}{xy}+\frac{n^2x}{xy}\ge\frac{\left(m+n\right)^2}{x+y}\)
\(\Leftrightarrow\left(m^2y+n^2x\right)\left(x+y\right)\ge xy\left(m+n\right)^2\)
\(\Leftrightarrow m^2xy+m^2y^2+n^2x^2+n^2xy\ge xy\left(m^2+2mn+m^2\right)\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2\ge m^2xy+2mnxy+n^2xy\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2-m^2xy-2mnxy-n^2xy\ge0\)
\(\Leftrightarrow m^2y^2-2mnxy+n^2x^2\ge0\)
\(\Leftrightarrow\left(my-nx\right)^2\ge0\)(luôn đúng).
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}\)
Áp dụng bất dẳng thức (2), ta được:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n\right)^2}{x+y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\forall m,n,p\in R;x,y,z>0\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Theo đề bài, vì \(a,b,c>0\)nên áp dụng bất đẳng thức (1), ta được:
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{3^2}{3a}+\frac{2^2}{2b}+\frac{1^2}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}\)
\(\Leftrightarrow\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{6^2}{3a+2b+c}=\frac{36}{3a+2b+c}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\frac{3}{a}=\frac{2}{b}=\frac{1}{c}\Leftrightarrow6a=9b=18c\)
Vậy với \(a,b,c>0\)thì \(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{36}{3a+2b+c}\)