\(\ne\)0 chi ro rang neu 2a+3b+c\(⋮̸\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

a=3

b=4

c=5

27 tháng 11 2018

vì chỉ có a khác 0 =>a\(\in\)các số từ 1\(\rightarrow\)9;còn b và c thì \(\in\)các số từ 0\(\rightarrow\)9 và với điều kiện 2a+3b+c\(⋮̸\)7

13 tháng 10 2018

a) Giả sử abcdeg chia hết cho 37                     —> 999abc+(abc+deg) chia hết cho 37

—> 999abc chia hết cho 37  vì 999 :37 ko dư                                                     —>abc + deg  chia hết cho 37

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

17 tháng 9 2017

Câu 1 :

b) [( 3x + 1 )3] = 150 => ( 3x + 1 )3 = 1 => 3x + 1 = 1 => 3x = 0 => x = 0

21 tháng 6 2019

Câu 2: Theo đề bài thì \(a\equiv b\left(mod7\right)\Rightarrow a-b\equiv0\left(mod7\right)\)

Hay a - b chia hết cho 7 (đpcm)

Nếu cách trên sai thì lấy cách sau chữa liền,thầy khỏi la:v

Do a chia hết cho 7,đặt a = 7k. Do b chia hết cho 7, đặt b = 7h

Khi đó \(a-b=7\left(k-h\right)⋮7\) (đpcm)

Hai cách cùng sai thì mình chịu. (chắc ko có cái này đâu:v)