Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)
Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:
\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)
Cộng hai bất đẳng thức ta được:
\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Đặt \(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}\right)\)
BĐT cần c/m tương đương với
\(\sum\dfrac{yz}{xy+xz+2yz}\le\dfrac{3}{4}\)
\(\Leftrightarrow\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{3}{2}\)
Ta có \(\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{\left(2\sum xy\right)^2}{\sum\left(xy+xz+2yz\right)\left(xy+xz\right)}=\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\)
Như vậy ta cần c/m \(\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\ge\dfrac{3}{2}\)
\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\sum x^2y^2+18\sum x^2yz\)
\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\left(\sum xy\right)^2+6\sum x^2yz\)
\(\Leftrightarrow\left(\sum xy\right)^2\ge3\sum x^2yz\) (luôn đúng)
Ta có:
\(\dfrac{1}{ab+a+2}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{1+c}+\dfrac{1}{a+1}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{3}{4}\)
giải tạm 1 bài z -,-
2) Cauchy-Schwarz dạng Engel :
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{6}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)
Chúc bạn học tốt ~
4/ Ta có: \(6=a+b+c+ab+bc+ca\ge3\left(\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{abc}\right)\)
Đặt \(\sqrt[3]{abc}=t\Rightarrow t^2+t\le2\Rightarrow t\le1\Rightarrow t^3=C=abc\le1\)
Vậy...
5/ \(D\le\left(\frac{a+b+c}{3}\right)^3.\left[\frac{2\left(a+b+c\right)}{3}\right]^3=\frac{512}{729}\)
Vậy ...
P/s: Em không chắc
Câu bất trong đề thi vào lớp 10 chuyên Toán chuyên Phan Bội Châu Năm 2017-2018
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+c+a}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\\\dfrac{b}{a+2b+c}=\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}=\dfrac{c}{a+c+b+c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{a}{4\left(a+b\right)}+\dfrac{a}{4\left(a+c\right)}+\dfrac{b}{4\left(a+b\right)}+\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(a+c\right)}+\dfrac{c}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{a}{4\left(a+b\right)}+\dfrac{b}{4\left(a+b\right)}\right]+\left[\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(b+c\right)}\right]+\left[\dfrac{c}{4\left(a+c\right)}+\dfrac{a}{4\left(a+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}\)
\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c\)
Ta có: \(\dfrac{ab}{c+1}=\dfrac{ab}{b+c+a+c}\le\dfrac{1}{4}\left(\dfrac{ab}{b+c}+\dfrac{ab}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{bc}{a+1}\le\dfrac{1}{4}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)
Cộng theo vế các BĐT trên ta có:
\(VT\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
Trước tiên ta đi chứng minh BĐT phụ là:
Với a,b>0�,�>0 thì a2+b4≥ab(a2+b2)�2+�4≥��(�2+�2)
Cách CM:
BĐT trên tương đương với: (a−b)2(a2+ab+b2)≥0(�−�)2(�2+��+�2)≥0 (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
⇒ca4+b4+c≤cab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
⇒T≤a2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)
Dấu bằng xảy ra khi a=b=c=1
Nó bị mất cái dấu gạch ngang chỗ phân số nha b