\(\frac{a+b}{a-b}.\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

\(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+a}{c-a}+\frac{c+a}{c-a}.\frac{a+b}{a-b}\)\(=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2+ab+bc+ca\right)\left(c-a\right)+\left(c^2+ab+bc+ca\right)\left(a-b\right)+\left(a^2+ab+bc+ca\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2c+bc^2+c^2a-ab^2-a^2b-ca^2\right)+\left(c^2a+a^2b+ca^2-bc^2-ab^2-b^2c\right)+\left(a^2b+ab^2+b^2c-ca^2-bc^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(a^2b-ca^2\right)+\left(b^2c-bc^2\right)-\left(ab^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(b-c\right)\left(a^2+bc-ab-ac\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)

9 tháng 9 2020

abc  bnj k

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

8 tháng 8 2017

Từng ý nhé !!!

\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(\frac{1}{abc}.3abc=3\)

8 tháng 8 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)

\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)

\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)

\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)

Xét \(a=b=c\) ta có :

\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)

23 tháng 4 2019

xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b

Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )

Vậy A = -1

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

8 tháng 12 2018

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                   đpcm

8 tháng 12 2018

bỏ chữ đpcm đi bạn nhé.

Mình nhầm~

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

20 tháng 12 2017

\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(P=\frac{1}{a-b}.\frac{a^2\left(b-c\right)-b^2\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(P=\frac{1}{a-b}.\frac{a^2b-a^2c-b^2a+b^2c}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(P=\frac{1}{a-b}.\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(P=\frac{1}{a-b}.\frac{\left(a-b\right)\left(ab-ac-bc\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)

\(P=\frac{ab-ac-bc}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(P=\frac{ab-ac-bc+c^2}{\left(a-c\right)\left(b-c\right)}=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)

=> P = 1

Đáp số: P=1

24 tháng 3 2021

\(P=-\frac{a^2}{\left(a-b\right)\left(c-a\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}-\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)

\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

10 tháng 3 2020

trả lời

dùng bddt bunhiacopsky là ra kq

ho ktoots

10 tháng 3 2020

cố tử thần ♡๖ۣۜŦεαм♡❤Ɠ长♡ღ

Chị ơi dùng bđt BCS , dấu = xảy ra P =1 như thế có gọi là giá trị của P=1 không nhỉ ?