Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{8}{a^2}+\frac{8}{b^2}+\frac{8}{c^2}=8\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
1)\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)
=>\(\frac{x-b-c}{a}-1+\frac{x-c-a}{b}-1+\frac{x-a-b}{c}-1=0\)
=>\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
=>\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
Nếu x - a -b -c = 0 => phương trình có nghiệm duy nhất x = a + b + c
Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)=> Phương trình có vô số nghiệm x thuộc R
Giả sử \(a\ge b\ge c\)
Ta có:\(\frac{a+b}{ab+c^2}+\frac{b+c}{bc+a^2}+\frac{c+a}{ca+b^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{ac+bc-ab-c^2}{c\left(ab+c^2\right)}+\frac{ab+ac-bc-a^2}{\left(bc+a^2\right)a}+\frac{cb+ab-ca-b^2}{b\left(ca+b^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}+\frac{\left(c-b\right)\left(b-a\right)}{b\left(ca+b^2\right)}\le0\)
Ta có:\(\left(c-b\right)\left(b-a\right)\ge0;\left(b-a\right)\left(a-c\right)\le0;\left(a-c\right)\left(c-b\right)\le0\)
\(\Rightarrow\frac{\left(c-b\right)\left(c-a\right)}{b\left(ca+b^2\right)}\le\frac{\left(c-b\right)\left(c-a\right)}{c\left(ab+c^2\right)}\)
\(\Rightarrow LHS\le\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(c-b\right)\left(b-a\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}\)
\(=\frac{-\left(c-b\right)^2}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)c}\le0\)
\(\Rightarrowđpcm\)
Từng ý nhé !!!
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(\frac{1}{abc}.3abc=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)
\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)
\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)
\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)
Xét \(a=b=c\) ta có :
\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)
Đặt \(A=\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}=\frac{a^2+2ab+b^2}{ab}+\frac{b^2+2bc+c^2}{bc}+\frac{c^2+2ac+c^2}{ca}\)
\(=\frac{a}{b}+2+\frac{b}{a}+\frac{b}{c}+2+\frac{c}{b}+\frac{c}{a}+2+\frac{a}{c}=6+a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{b}+\frac{1}{a}\right)\)
\(\ge6+\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\ge6+2\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+b}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
\(\ge6+2\cdot\frac{3}{2}+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=9+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
Dấu "=" xảy ra <=> a=b=c
Q=bc/a +ac/b+ab/c
Q=abc/a2+abc/b2+abc/c2
Q=abc x (1/a2+1/b2+1/c2)
Q=8 x 3/4
Q=6