\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2023

 Đặt \(a+b=x,b+c=y,c+a=z\) với \(x,y,z>0\). Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=2\)

 \(\Rightarrow\dfrac{1}{x+1}=2-\dfrac{1}{y+1}-\dfrac{1}{z+1}\) \(=1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\) \(=\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

 \(\Rightarrow\dfrac{1}{x+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}\)

 Tương tự, ta có: \(\dfrac{1}{y+1}\ge2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}\) và \(\dfrac{1}{z+1}\ge2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

 Nhân theo vế 3 BĐT vừa tìm được, ta có:

  \(\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}.2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}.2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8.\dfrac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\dfrac{1}{8}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{4}\)

Vậy GTLN của \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là \(\dfrac{1}{8}\), xảy ra khi \(a=b=c=\dfrac{1}{4}\)

27 tháng 11 2018

mai lam

16 tháng 12 2018

Áp dụng BĐT AM-GM: \(VT\le\sum\dfrac{1}{\sqrt{a^2+1}.\sqrt{2a}.2\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{2}\sqrt{a^2+1}}\)

Ta đi chứng minh \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

Giả sử c=max{a, b, c}.Suy ra \(c\ge1\) nên \(ab\le1\). Ta có bổ đề:

\(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}\le\dfrac{2}{\sqrt{1+ab}}\)(*)

#cm: Áp dụng Bunyakovsky: \(VT_{(*)} \)\(\le\sqrt{2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\right)}\)

Xét \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}-\dfrac{2}{ab+1}=\dfrac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

Nên \(VT_{(*)}\)\(\le\sqrt{2.\dfrac{2}{ab+1}}=\dfrac{2}{\sqrt{ab+1}}\), suy ra đpcm.

Do đó \(VT\le\dfrac{2}{\sqrt{ab+1}}+\dfrac{1}{\sqrt{c^2+1}}=2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\)

# cm: \(2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{2c\left(c^2+1\right)}+\sqrt{2c+2}\le3\sqrt{\left(c+1\right)\left(c^2+1\right)}\)

\(\Leftrightarrow8c^3+10c+2+8\sqrt{c\left(c+1\right)\left(c^2+1\right)}\le9\left(c^3+c^2+c+1\right)\)

hay \(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le c^3+9c^2-c+7\) ($)

Áp dụng BĐT AM-GM cho VT của ($):

\(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le4\left(2c^2+c+1\right)\) .Ta chứng minh

\(8c^2+4c+4\le c^3+9c^2-c+7\) hay \(\left(c-1\right)^2\left(c+3\right)\ge0\) (đúng)

Vậy ta có đpcm. Dấu = xảy ra khi a=b=c=1

29 tháng 5 2017

Ta có:\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{a+c+1}=2\)

\(\Rightarrow\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{a+c+1}\right)\)

\(\Rightarrow\dfrac{1}{a+b+1}=\dfrac{b+c}{b+c+1}+\dfrac{a+c}{a+c+1}\ge2\sqrt{\dfrac{\left(b+c\right)\left(a+c\right)}{\left(b+c+1\right)\left(a+c+1\right)}}\)Chứng minh tương tự :\(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\)

\(\dfrac{1}{a+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)

Nhân các bất đẳng thức trên lại với nhau về theo vế ,ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi:\(a=b=c=\dfrac{1}{4}\)

Vậy giá trị lớn nhất của (a+b)(b+c)(c+a) là \(\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{4}\)

12 tháng 2 2018

theo de bai ta co \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) suy ra ab+bc+ac=abc

\(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ac}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

nên vt =\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(c+b\right)}\)

nx \(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\) >= \(\dfrac{3a}{4}\)

ttu vt>= \(\dfrac{3\left(a+b+c\right)}{4}-\left(\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{a+b}{8}+\dfrac{b+c}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\right)\) =\(\dfrac{a+b+c}{4}\)

dau = say ra a=b=c=3

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

13 tháng 6 2019

Dự đoán xảy ra cực trị khi a = b = c  =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P

Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)

Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)

\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)

Em cần suy ra nghĩ tiếp:(

13 tháng 6 2019

suy ra -> suy nghĩ giúp em ạ!

 _tth_

2 tháng 6 2018

Đang rảnh, làm luôn\(A=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}=\dfrac{1}{2}\left[\left(\dfrac{a}{bc}+\dfrac{b}{ca}\right)+\left(\dfrac{b}{ca}+\dfrac{c}{ab}\right)+\left(\dfrac{c}{ab}+\dfrac{a}{bc}\right)\right]\ge\dfrac{1}{2}\left(\dfrac{2}{c}+\dfrac{2}{a}+\dfrac{2}{b}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 2

2 tháng 6 2018

Ghép đối xứng

AH
Akai Haruma
Giáo viên
18 tháng 11 2018

Lời giải:

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)

Khi đó:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+ac+bc+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|\)

Vì $a,b$ dương nên \(\frac{-1}{c}=\frac{1}{a}+\frac{1}{b}>0\Rightarrow c< 0\Rightarrow 2|c|=-2c\)

Do đó:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+b+2c+2|c|=a+b+2c+(-2c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)