K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

ta có a+b+c=6=> (a+b+c)^2=36

<=> a^2+b^2+c^2+2(ab+bc+ca)=36

<=> a^2+b^2+c^2=36-2(ab+bc+ca) (1)

theo đề bài ta có 

(a-b)^2+(b-c)^2+(a-c)^2=a^2+b^2+c^2

<=> a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=a^2+b^2+c^2

<=> 2(a^2+b^2+c^2)-2(ab+bc+ca)=a^2+b^2+c^2

<=>-2(ab+bc+ca )=-(a^2+b^2+c^2)

<=> ab+bc+ca=(a^2+b^2+c^2)/2 (2)

(1),(2)=> ab+bc+ca=[36-2(ab+bc+ca)]/2

2(ab+bc+ca)=36-2(ab+bc+ca)

4(ab+bc+ca)=36

vậy ab+bc+ca=9

23 tháng 9 2020

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2

<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2

<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )

<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0

<=> a2 + b2 + c2 - 2.9 = 0

<=> a2 + b2 + c2 - 18 = 0

<=> a2 + b2 + c2 = 18

Xét ( a + b + c )2 ta có :

( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

                     = ( a2 + b2 + c2 ) + 2( ab + bc + ca )

                     = 18 + 2.9

                     = 18 + 18 = 36

=> ( a + b + c )2 = 36

=> a + b + c = 6 ( do a, b, c là các số dương )

29 tháng 8 2018

Nhân ra được a2+b2+c2=2ab+2ac+2bc

=>(a+b+c)^2=4ab+4ac+4bc

=>36=4M

=>M=9

29 tháng 8 2018

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( a - c )2

=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc - c2 + a2 - 2ac +c2

=> a2 + b2 + c2 = 2ab + 2bc + 2ac

Có :  a + b + c = 6

=> ( a + b + c )2 = 62

=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 36

Mà a2 + b2 + c2 = 2ab + 2bc + 2ac

=> 2ab +  2ac + 2bc + 2ab + 2ac + 2bc = 36

=> 4ab + 4ac + 4bc = 36

=> ab + ac + bc = 9

Mà M = ab + ac + bc

Vậy M = 9

31 tháng 7 2020

Ta có: (a - b)2 + (b - c)2  + (a - c)2 = a2 + b2 + c2

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + a2 - 2ac + c2 = a2 + b2 + c2

<=> a2 + b2 + c2 = 2(ab + bc + ac)

<=> ab + bc + ac = \(\frac{a^2+b^2+c^2}{2}\) (1)

Ta lại có: a + b + c = 6

<=> (a + b + c)2 = 36

<=> a2 + b2 + c2 + 2(ab + bc + ac) = 36 

<=> a2 + b2 + c2 + a2 + b2 + c2 = 36 (vì a2 + b2 + c2 = 2(ab + bc + ac)

<=> 2(a2 + b2 + c2) = 36 <=> a2 + b2 + c2 = 18

<=> \(\frac{a^2+b^2+c^2}{2}=9\)(2)

Từ (1) và (2) => ab + ac + bc = 9