Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
*Biến đổi \(\frac{a+b}{\sqrt{ab+c}}=\frac{1-c}{\sqrt{ab+1-a-b}}=\frac{1-c}{\sqrt{\left(1-a\right)\left(1-b\right)}}\)
*Tương tự ta có: \(\frac{b+c}{\sqrt{bc+a}}=\frac{1-a}{\sqrt{\left(1-b\right)\left(1-c\right)}}\)
và \(\frac{c+a}{\sqrt{ca+b}}=\frac{1-b}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)
*Từ đó \(VT=\frac{1-c}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{1-a}{\sqrt{\left(1-b\right)\left(1-c\right)}}\)
\(+\frac{1-b}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)
Do a,b,c dương và a + b + c = 1 nên \(a,b,c\in\left(0;1\right)\)\(\Rightarrow1-a;1-b;1-c\)dương
*Áp dụng BĐT Cauchy cho 3 số không âm, ta được:
\(VT\ge3\sqrt[3]{\frac{1-c}{\sqrt{\left(1-a\right)\left(1-b\right)}}.\frac{1-b}{\sqrt{\left(1-c\right)\left(1-a\right)}}.\frac{1-a}{\sqrt{\left(1-c\right)\left(1-b\right)}}}=3\)
(Dấu "=" xảy ra khi và chỉ khi a = b = c = 1/3)
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ Biến đổi thẳng ở dưới mẫu luôn sẽ hay hơn nha! Khi đó không cần để ý tới dấu của 1 - a, 1 - b, 1 - c.
Sửa đề: \(\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}}\ge3\)
\(VT=\Sigma_{cyc}\frac{a+b}{\sqrt{ab+c}}=\Sigma_{cyc}\frac{a+b}{\sqrt{ab+\left(a+b+c\right)c}}\)
\(=\Sigma_{cyc}\frac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}\ge3\sqrt[3]{\frac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}.\frac{b+c}{\sqrt{\left(b+a\right)\left(c+a\right)}}.\frac{c+a}{\sqrt{\left(c+b\right)\left(a+b\right)}}}=3\)
Nó sẽ ngắn hơn một chút đúng không?
Theo mình đề chứng minh: \(3Min\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Giải
Áp dụng BĐT Cauchy ta có:
\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự ta cũng có: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế theo vế các BĐT trên với nhau ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2>1\) (Đpcm)
Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))
Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)
Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
https://artofproblemsolving.com/community/c1101515h2076182_lemma_by_vo_quoc_ba_can Sao olm ko hiện link
Đề ra sai,nếu a,b,c không dương thì với 2 số âm 1 số dương thì chắc chắn có ít nhất một cái căn bậc 2 sẽ không tồn tại.
Chứng minh:trong 2 số âm 1 số dương thì chắc chắn tốn tại một căn thức mà cả tử và mẫu đều trái dấu
Không mất tính tổng quát giả sử đó là \(\sqrt{\frac{a}{b}}\)
Khi đó \(\frac{a}{b}< 0\Rightarrow\sqrt{\frac{a}{b}}\) không tồn tại
Vậy ta có đpcm
Ta có: \(S^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\frac{a\sqrt{b}}{\sqrt{c}}+2\frac{b\sqrt{c}}{\sqrt{a}}+2\frac{c\sqrt{a}}{\sqrt{b}}\)
Áp dụng BĐT Cosi cho 3 số dương ta được
\(\hept{\begin{cases}\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a\left(1\right)\\\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{a}+a\ge4b\left(2\right)\\\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\left(3\right)\end{cases}}\)
Cộng theo từng vế của (1) (2) (3)
=> \(S^2\ge3\left(a+b+c\right)\ge9\Rightarrow A\ge3\)
=> MinS=3 đạt được khi a=b=c=1
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Ta có :\(2\sqrt{\frac{b+c-a}{a}}\le\frac{b+c-a}{a}+1=\frac{b+c}{a}\)
<=> \(\sqrt{\frac{a}{b+c-a}}\ge\frac{2a}{b+c}\)
\(CMTT\)=> \(\sqrt{\frac{b}{c+a-b}}\ge\frac{2b}{c+a}\)
\(\sqrt{\frac{c}{a+b-c}}\ge\frac{2c}{a+b}\)
=>\(VT\)\(\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\)
\(CM\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
=> \(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3\)
=>\(VT\ge3\)
lên google tìm cosi mà làm theo nha