Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT tam giác, ta có:
\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\Rightarrow\hept{\begin{cases}2a< a+b+c\\2b< a+b+c\\2c< a+b+c\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2a< 6\\2b< 6\\2c< 6\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\b< 3\\c< 3\end{cases}\Rightarrow}}\hept{\begin{cases}3-a>0\\3-b>0\\3-c>0\end{cases}}\)
Áp dụng BĐT Cauchy cho bộ ba số thực không âm, ta có:
\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\frac{3-a+3-b+3-c}{3}\right)^3=1\)
\(\Leftrightarrow27-9\left(a+b+c\right)+3\left(ab+bc+ca\right)-abc\le1\)
\(\Leftrightarrow abc\ge27-9.6+3\left(ab+bc+ca\right)-1\)
\(\Leftrightarrow2abc\ge-56+6\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+3.2\left(ab+bc+ca\right)-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3.36-56=\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge52\)
Dấu \("="\) xảy ra khi \(a=b=c=2\)
Vậy \(3\left(a^2+b^2+c^2\right)+2abc\ge52\)
3/ b/
TH 1: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 1 số âm hoặc 3 số đều âm thì BĐT đúng. (Thật ra không xảy ra được trường hợp cả 3 số đều âm đâu cứ ghi cho vui thôi).
TH 2: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 2 số âm
Giả sử 2 số âm đó là \(\left(a+b-c\right);\left(b+c-a\right)\)
\(\Rightarrow a+b-c+b+c-a=2b< 0\)trái đề bài. Nên không thể cùng lúc 2 số đều âm.
TH 3: Cả 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)đều dương
Ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{a+b-c+b+c-a}{2}=b\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{matrix}\right.\)
Nhân (1), (2), (3) vế theo vế ta được
\(\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)
Vậy ta có ĐPCM
3/ c/ Sửa đề thành a,b,c là 3 cạnh của tam giác nhé.
Ta cần chứng minh
\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
\(\Leftrightarrow\left[ab^2+ac^2-a^3\right]+\left[ba^2+bc^2-b^3\right]+\left[ca^2+cb^2-c^3\right]>2abc\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}+\dfrac{a^2+b^2-c^2}{2ab}-1>0\)
\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}>0\) (đúng)
2 câu còn lại thì câu 1 sai rõ quá rồi bỏ qua. Còn câu 3a thì để t xem thử có sửa được đề không t làm nốt sau nhé. Giờ bận rồi.
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
Do a;b;c là 3 cạnh của tam giác nên: a + b + c = 2
Áp dụng bất đẳng thức của tam giác:
\(\Rightarrow\)a < b + c
\(\Rightarrow\)a + a < a + b + c
\(\Rightarrow\)2a < 2 \(\Rightarrow\)a < 1
Làm tương tự; ta chứng minh được b < 1; c < 1
\(\Rightarrow\)(1 - a)(1 - b)(1 - c) > 0
\(\Rightarrow\)(1 - a - b + ab)(1 - c) > 0
\(\Rightarrow\)1 - a - b + ab - c + ac + bc - abc > 0
\(\Rightarrow\)1 - (a + b + c) + (ab + ac + bc) > abc
\(\Rightarrow\)2[1 - (a + b + c) + (ab + ac + bc)] > 2abc
\(\Rightarrow\)2 - 2(a + b + c) + 2(ab + ac + bc) - 2abc > 0
\(\Rightarrow\)2abc + (a + b + c)^2 - 2ab - 2ac - 2bc < 2 (vì a + b + c = 2)
\(\Rightarrow\)\(a^2+b^2+c^2+2abc< 2\)(ĐPCM)
Lời giải:
Áp dụng BĐT AM-GM cho các số dương:
\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)
\((a+b-c)(c+a-b)\leq \left(\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2\)
Nhân theo vế và rút gọn :
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
\(\Leftrightarrow (6-2c)(6-2a)(6-2b)\leq abc\) (do $a+b+c=6$)
\(\Leftrightarrow 8[27-9(a+b+c)+3(ab+bc+ac)-abc]\leq abc\)
\(\Leftrightarrow 8(-27+3(ab+bc+ac)-abc)\leq abc\)
\(\Leftrightarrow abc\geq \frac{8}{3}(ab+bc+ac)-24\)
Do đó:
\(3(a^2+b^2+c^2)+2abc\geq 3(a^2+b^2+c^2)+\frac{16}{3}(ab+bc+ac)-48\)
\(=3(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-48=60-\frac{2}{3}(ab+bc+ac)\)
Mà theo hệ quả của BĐT AM-GM \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=12\)
\(\Rightarrow 3(a^2+b^2+c^2)+2abc\geq 60-\frac{2}{3}.12=52\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$