Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Ta có:
\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)
\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)
Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)
\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)
\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)
\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)
\("="\Leftrightarrow a=b=c=1\)
Ta có :
\(VT=\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
Theo BĐT Cauchy ta có :
\(\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)
Theo BĐT Cô - Si ta lại có : \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}=\dfrac{1}{2}\)
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)