\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

Tính M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải 

Cho a,b,c khác 0

a+bcc =ab+cb =a+b+ca 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> (a+b)(b+c)(c+a)abc = 1

Study well 

Cái phần cuối mk sưa lại nha

=> a = b = c 

=> \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=1\)

Study well 

29 tháng 10 2017

cậu bấm vào câu hỏi tương tự nha

15 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)

Vậy thì \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Thay vào biểu thức M ta có:

\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8.\)

Vậy M = 8.

2 tháng 11 2018

DÙng tính chất dãy tỉ số bằng nhau là ra nhé 

3 tháng 11 2018

\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)

7 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có dãy tỉ lệ thức trên bằng:

\(=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a+c-b=b\\b+c-a=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}}\hept{\begin{cases}a+b+c=3c\\a+b+c=3b\\a+b+c=3a\end{cases}\Rightarrow3a=3b=3c\Rightarrow a=b=c}\)

 Thay vào M, ta có:

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(a+a\right)\left(b+b\right)\left(c+c\right)}{abc}=\frac{2a.2b.2c}{abc}=2.2.2=8\)

18 tháng 8 2016

có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1

=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c

    a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b

     -a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a

có M= ( a+b)(b+c)(c+a) / abc 

        = 2c . 2a . 2b / abc

        = 8abc/abc

        =8

vậy M=8

       = 2c . 2a.

18 tháng 8 2016

câu cuối sau phần kết luận  = 2c . 2a bỏ nha ( viết vội quá)

19 tháng 10 2020

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}\)(1)

+) Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào biểu thức M ta được: \(M=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

+) Nếu \(a+b+c\ne0\)

\(\Rightarrow\)Giá trị của (1) \(=1\)\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}}\)

Thay vào biểu thức M ta được: \(M=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

26 tháng 10 2017

Đặt dãy tỉ số là k(k là số nguyên), ta có

a+b-c=ck

a-b+c=bk

-a+b+c=ak

Cộng lại ta có a+b+c=(a+b+c)k

=> k=1

=> a+b=2c

    b+c=2a

    c+a=2b

thay vào M suy ra M =8, mình làm hơi tắt, bạn thông cảm

26 tháng 10 2017

\(M=8\)

1 tháng 11 2020

TH1: Nếu \(a+b+c=0\) ( \(a,b,c\ne0\))

\(\Rightarrow a+b=-c\)\(b+c=-a\)\(c+a=-b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(a,b,c\ne0\))

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b=2c\)

\(a-b+c=b\)\(\Rightarrow a+c=2b\)

\(-a+b+c=a\)\(\Rightarrow b+c=2a\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

1 tháng 11 2020

Với \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) và ĐK : \(a,b,c\ne0\), ta có :

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}\). Đặt \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=x\), mà \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=\frac{a+b-c+a-b+c+b-a+c}{c+b+a}\), có tiếp : \(=\frac{a-a+a+b-b+b+c-c+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\). Nhưng vì ĐK :\(=\frac{-a+b+c}{a}\), nên a + b - c = a - b + c = a - c + b = x ( coi x = a = b = c )

Tức là a,b,c = \(Stn\inℕ^∗\)

 \(M=\frac{2x2x2x}{abc}=\frac{x^38}{abc}=\frac{x512}{abc}\)

Biểu thức xảy ra khi a = b = c = x