Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
Bài giải:
Ta có: H và E đối xứng nhau qua AC(gt)
⇒AC là đường trung trực của HE(tính chất hai điểm đối xứng nhau qua một đường thẳng)
hay A nằm trên đường trực của HE
⇒AH=AE(1)
Ta có: H và D đối xứng nhau qua AB(gt)
⇒AB là đường trung trực của HD(tính chất hai điểm đối xứng nhau qua một đường thẳng)
hay A nằm trên đường trực của HD
⇒AH=AD(2)
Từ (1) và (2) suy ra AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(định nghĩa tam giác cân)
a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)
Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)
=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường
b/ Trước hết ta phải c/m A, I, K thẳng hàng
Nối AI; AK
+ Xét tam giác AHK có
Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH
=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)
=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)
+ Xét tam giác AIH chứng minh tương tự ta cũng có
^HAM=^IAM (2)
+ Mà ^HAN+^HAM=^BAC=90 (3)
Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90
=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng
+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A
=> AK=AH=AI => A là trung điểm của IK
+ Xét tam giác
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
1: H đối xứng D qua AB
=>AH=AD
H đối xứng E qua AC
=>AH=AE
=>AH=AD=AE
3: Xét ΔAIH và ΔADI có
AH=AD
góc HAI=góc DAI
AIchung
=>ΔAIH=ΔAID
=>góc AHI=góc ADI=góc ADE
Xét ΔAHK và ΔAEK có
AH=AE
góc HAK=góc EAK
AK chung
=>ΔAHK=ΔAEK
=>góc AEK=góc AHK=góc AED
=>góc AHK=góc AHI
=>HA là phân giác của góc IHK
chép sai đề bài thì làm sao giải được
sai chỗ này nè
kẻ AH...BC tại H