\(\in\)Z thoả mãn: (a-1)3+(b-2017)3+(c+2018)3<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Năm sau em học lớp 8 em làm giùm cko

9 tháng 1 2017

ko biết làm

16 tháng 3 2019

1 ) Đề bài > not \(\ge\)

Giả sử đpcm là đúng , khi đó , ta có :

\(x^2+y^2+8>xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)

Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm

2 ) ĐK : a ; b ; c không âm

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)

3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)

\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

26 tháng 8 2018

Ta có:

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^3=0\)

\(\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)

\(\Rightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)

\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ac\right)=3abc\)

Vì a + b + c = 0

\(\Rightarrow a^3+b^3+c^3=3abc\)

Do \(3abc⋮3abc\)

\(\Rightarrow a^3+b^3+c^3⋮3abc\)

9 tháng 2 2018

Ta có a + b = 1 nên  \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)

\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 2 2018

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

16 tháng 11 2018

Ta có: \(a^3+b^3+c^3=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)

\(=a\left(a^2-1\right)+b\left(b^2-a\right)+c\left(c^2-1\right)+\left(a+b+c\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b+1\right)\left(b-1\right)+c\left(c-1\right)\left(c+1\right)+\left(a+b+c\right)\)

\(a\left(a-1\right)\left(a+1\right)⋮6\)

\(b\left(b-1\right)\left(b+1\right)⋮6\)

\(c\left(c-1\right)\left(c+1\right)⋮6\)

\(a+b+c⋮6\)

\(\Rightarrow a^3+b^3+c^3⋮6\)

\(\Rightarrowđccm\)

NV
5 tháng 10 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)

\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)