\(\in\left[0;2\right]vàa+b+c=3.\)

Tìm Max \(Q=a^2+b^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

- Vì vai trò của a , b ,c trong bài này là như nhau nên có thể giả sử \(a\le b\le c\)mà không làm giảm đi tính tổng quát của bài toán . Khi đó ta có :

\(3=a+b+c\le3c\Rightarrow c\ge1\Rightarrow1\le x\le2\)

Ta có : \(a^2+b^2\le\left(a+b\right)^2\)(vì \(a,b\ge0\))

\(\Rightarrow A\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2=2c^2-6c+9\)

          \(\le2.\left(c^2-3c+\frac{9}{4}\right)+\frac{9}{2}=2\left(c-\frac{3}{2}\right)^2+\frac{9}{2}\)

Do \(1\le c\le2\)nên \(-\frac{1}{2}\le x-\frac{3}{2}\le\frac{1}{2}\Rightarrow|c-\frac{3}{2}|\le\frac{1}{2}\)

\(\Rightarrow2|x-\frac{3}{2}|^2+\frac{9}{2}\le2.\frac{1}{4}+\frac{9}{2}=5\Rightarrow A\le5\)

Dễ thấy khi a = 0 ; b = 1 ; c = 2 thỏa mãn \(a,b,c\in\left[0;2\right];a+b+c=3\)và \(a\le b\le c\)thì A = 5

Vậy : \(A_{max}=5\)

24 tháng 1 2021

Do \(a,b,c\in\left[0;2\right]\)nên \(\left(a-2\right)\left(b-2\right)\left(c-2\right)\le0\)\(\Leftrightarrow abc-2\left(ab+bc+ca\right)+4\left(a+b+c\right)-8\le0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4+abc\Leftrightarrow\left(a+b+c\right)^2\ge a^2+b^2+c^2+abc+4\)\(\Leftrightarrow a^2+b^2+c^2\le5-abc\le5\)(Do \(a,b,c\ge0\))

Đẳng thức xảy ra khi trong 3 số a, b, c có một số bằng 0, một số bằng 1 và một số bằng 2

NV
6 tháng 2 2020

Không mất tính tổng quát, giả sử \(a=max\left\{a;b;c\right\}\)

\(\Rightarrow3\le3a\Rightarrow a\ge1\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Ta có:

\(a^2+b^2+c^2\le a^2+\left(b+c\right)^2=a^2+\left(3-a\right)^2\)

\(=2a^2-6a+9=2\left(a^2-3a+2\right)+5=2\left(a-1\right)\left(a-2\right)+5\le5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị

6 tháng 2 2020

Từ \(a,b,c\in\left[0;2\right]\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc+8\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-abc\le4\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le4\)

\(\Leftrightarrow\left(a+b+c\right)^2-a^2+b^2+c^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Xảy ra khi \(\text{a=2;b=1;c=0}\) và hoán vị

12 tháng 11 2017

*)Chứng minh \(a^2+b^2+c^2\ge3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge9\Leftrightarrow a^2+b^2+c^2\ge3\)

Xảy ra khi \(a=b=c=1\)

*)Chứng minh \(a^2+b^2+c^2\le5\)

Từ \(a,b,c\in\left[0;2\right]\)\(\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc+8\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-abc\le4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\le4\)

\(\Leftrightarrow\left(a+b+c\right)^2-a^2+b^2+c^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Xảy ra khi \(a=2;b=1;c=0\) và hoán vị

1 tháng 6 2018

Cho mk hỏi abc = ? v bn

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2