Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình k chép lại đề nữa nha!
Vì |x+45-40| luôn lớn hơn hoặc bằng 0 với mọi x.
|y+10-11| luôn lớn hơn hoặc bằng 0 với mọi y
Mà |x+45-40|+|y+10-11| nhỏ hơn hoặc bằng 0
Nên |x+45-40| =0 => x=-5
Và |y+10-11|=0 => y=1
Vậy x= -5; y =1
Chúc bạn học tốt nha!
b) 10000-|x+5|
Vì |x+ 5| luôn lớn hơn hoặc bằng 0 với mọi x
=> 10000-|x+5| luôn nhỏ hơn hoặc bằng 10000 với mọi x
Dấu = xảy ra <=>: x+5 = 0
<=> x=-5
Vậy GTLN của biểu thức trên là 10000 tại x=-5.
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
A C B x 3cm 5cm
a. Trong ba điểm A, B, C điểm nào nằm giữa hai điểm còn lại?
Trên tia Ax, ta có: AC < AB (vì 3cm < 5cm)
=> Điểm C nằm giữa A và B
b. Tính độ dài đoạn thẳng BC
Ta có: Điểm C nằm giữa A và B
=> AC + BC = AB
Hay 3 + BC = 5
=> BC = 5 - 3 = 2(cm)
Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)
\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)
\(=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy S = 1
Thay \(abc=105\) ta có:
\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)
\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)
Ta có: M= abc/ ab+bc+ca
<=> 1/M = ab+ bc+ ca/ abc= 1/a+ 1/b+ 1/c (1)
Do: ab/ a+2b= 2/5 nên a+2b/ ab= 5/2
<=> 1/b+ 2/a= 5/2 (2)
Tương tự: bc/ b+2c= 3/4 nên b+2c/ bc= 4/3
<=> 1/c+2/b=4/3 (3)
ac/c+2a=3/5 <=> c+2a/ac=5/3
<=> 1/a+2/c=5/3 (4)
Cộng tổng của (2), (3), (4) ta đc:
( 1/b+2/a) + (1/c+2/b)+(1/a+2/c)= 5/2+4/3+5/3
<=> 3/a+3/b+3/c=5/2+3
<=> 3 x (1/a+1/b+1/c)=11/2 (5)
Thay (1) vào (5), ta có: 3 x 1/M = 11/2
<=> 1/M=11/6 <=>M=6/11
Vậy giá trị biểu thức M=6/11
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow\frac{bc+ac}{abc}=\frac{ab}{abc}\Rightarrow bc+ac=ab\)
\(\Rightarrow ab-ac-bc=0\Rightarrow a\left(b-c\right)-c\left(b-c\right)=c^2\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=c^2\Rightarrow\frac{a-c}{c}=\frac{c}{b-c}\)
a) để A thuộc Z thì x + 2 \(⋮\)3
=> x + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
=> x \(\in\){ -1 ; -3 ; 1 ; -5 }
Mấy bài còn lại tương tự
a) để A thuộc Z thì x + 2 ⋮3
=> x + 2 ∈Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
=> x ∈{ -1 ; -3 ; 1 ; -5 }
ab-ac+bc-c^2=-1
<=>a(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
Do đó trong 3 thừa số (b-c) và (a+c) phải có 1 thừa số bằng 1,thừa số kia bằng -1 tức chúng đối nhau
Vậy b-c=-(a+c)<=>b-c=-a-c
<=>b=-a=> a và b đối nhau=>a+b=0