Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \((\sqrt{a}; \sqrt{b}; \sqrt{c})=(x,y,z)\)
Khi đó điều kiện của bài toán trở thành:
\(x^2+y^2+z^2=x+y+z=2\Rightarrow xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{2^2-2}{2}=1\)
Ta có:
\(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{x}{x^2+xy+yz+xz}+\frac{y}{y^2+xy+yz+xz}+\frac{z}{z^2+xy+yz+xz}\)
\(=\frac{x}{x(x+y)+z(x+y)}+\frac{y}{y(y+x)+z(y+x)}+\frac{z}{z(z+y)+x(y+z)}\)
\(=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)
\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{(x+y)(y+z)(x+z)}(*)\)
Và:
\(\frac{2}{\sqrt{(a+1)(b+1)(c+1)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\)
\(=\frac{2}{\sqrt{(x^2+xy+yz+xz)(y^2+xy+yz+xz)(z^2+xy+yz+xz)}}=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}\)
\(=\frac{2}{\sqrt{(x+y)^2(y+z)^2(z+x)^2}}=\frac{2}{(x+y)(y+z)(x+z)}(**)\)
Từ \((*);(**)\Rightarrow \) đpcm.
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1\)
\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
Tương tự: \(b+1=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(c+1=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(VT=\sum\dfrac{\sqrt{a}}{a+1}=\sum\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\dfrac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(VP=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\dfrac{2}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2}}\)
\(=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(\Rightarrow VT=VP\) (đpcm)
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0