\(\in\) N. Chứng minh: \(\sqrt{a\left(b+1\right)}+\sqrt{b\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\) Mà \(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\) Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\) ...
Đọc tiếp

ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\)

\(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\)

Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\)

=\(\dfrac{4a^2\left(c^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

Tương tự rồi + vào, ta có

...\(\ge4\dfrac{a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

ta cần chứng minh \(3\left[a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)\right]\ge\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)

đến đây nhân tung ra và dùng cô-si tiếp

0
AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

Đặt \((\sqrt{a}; \sqrt{b}; \sqrt{c})=(x,y,z)\)

Khi đó điều kiện của bài toán trở thành:

\(x^2+y^2+z^2=x+y+z=2\Rightarrow xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{2^2-2}{2}=1\)

Ta có:

\(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{x}{x^2+xy+yz+xz}+\frac{y}{y^2+xy+yz+xz}+\frac{z}{z^2+xy+yz+xz}\)

\(=\frac{x}{x(x+y)+z(x+y)}+\frac{y}{y(y+x)+z(y+x)}+\frac{z}{z(z+y)+x(y+z)}\)

\(=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)

\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{(x+y)(y+z)(x+z)}(*)\)

Và:

\(\frac{2}{\sqrt{(a+1)(b+1)(c+1)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\)

\(=\frac{2}{\sqrt{(x^2+xy+yz+xz)(y^2+xy+yz+xz)(z^2+xy+yz+xz)}}=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}\)

\(=\frac{2}{\sqrt{(x+y)^2(y+z)^2(z+x)^2}}=\frac{2}{(x+y)(y+z)(x+z)}(**)\)

Từ \((*);(**)\Rightarrow \) đpcm.

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

NV
30 tháng 1 2019

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=4\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1\)

\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự: \(b+1=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\)

\(c+1=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\)

\(VT=\sum\dfrac{\sqrt{a}}{a+1}=\sum\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\dfrac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(VP=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\dfrac{2}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2}}\)

\(=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(\Rightarrow VT=VP\) (đpcm)

30 tháng 11 2019

*) ta có: \(a+b\ge2\sqrt{ab}\)

   \(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) 

Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0