\(\frac{a}{b}\))^5+(1+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{c^2}{1-c}\ge\frac{\left(a+b+c\right)^2}{3-\left(a+b+c\right)}=\frac{1}{2}\)

Vậy \(MIN_P=\frac{3}{2}\) khi \(a=b=c=\frac{1}{3}\)

27 tháng 2 2020

3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)

Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Min \(A=3\Leftrightarrow x=2\)

b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)

\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

4. Chắc đề là tìm min???

\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)

27 tháng 2 2020

1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)

\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" \(\Leftrightarrow a=b=c\)

2. Áp dụng bđt Cauchy ta có :

\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)

+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)

Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

NV
20 tháng 2 2020

Chỉ đúng trong trường hợp các số thực dương (kì lạ là các bạn rất thích quên điều kiện này khi đăng đề lên)

a/ \(\frac{a^3}{b^2}+a\ge2\sqrt{\frac{a^4}{b^2}}=\frac{2a^2}{b}\) ; \(\frac{b^3}{c^2}+b\ge\frac{2b^2}{c}\); \(\frac{c^3}{a^2}+c\ge\frac{2c^2}{a}\)

Cộng vế với vế:

\(VT+a+b+c\ge2VP\Rightarrow VT\ge2VP-\left(a+b+c\right)\)

\(2VP=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{\left(a+b+c\right)^2}{a+b+c}\)

\(\Rightarrow2VP\ge VP+a+b+c\)

\(\Rightarrow2VP-\left(a+b+c\right)\ge VP\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
20 tháng 2 2020

Câu dưới tương tự:

\(\frac{a^5}{b^3}+a^2+a^2\ge\frac{3a^3}{b}\) , làm tương tự với 2 cái còn lại và cộng lại:

\(\Rightarrow VT+2\left(a^2+b^2+c^2\right)\ge3\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)=3\left(\frac{a^4}{ab}+\frac{b^4}{ca}+\frac{c^4}{ab}\right)\ge\frac{3\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow VT\ge a^2+b^2+c^2\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

NV
26 tháng 4 2019

\(P=\sum\frac{a^3}{\sqrt{1+b^2}}=\sum\frac{\sqrt{2}a^4}{\sqrt{2}a\sqrt{1+b^2}}\ge\sum\frac{2\sqrt{2}a^4}{2a^2+b^2+1}\ge\frac{2\sqrt{2}\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2\right)+3}=\frac{3\sqrt{2}}{2}\)

\(\Rightarrow P_{min}=\frac{3\sqrt{2}}{2}\) khi \(a=b=c=1\)