\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2021

\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 6 2018

Em nghĩ đề là a chứ không phải 2a ;v

\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\\ =\dfrac{a}{\sqrt{ab+bc+ac+a^2}}+\dfrac{b}{\sqrt{ab+bc+ac+b^2}}+\dfrac{c}{\sqrt{ab+bc+ac+c^2}}\\ =\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\\ \le\left(\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\right)+\left(\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\right)+\left(\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{2\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{4}\)

Áp dụng bđt : \(\dfrac{1}{xy}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}\)

Dấu "=" xảy ra khi a=b=c=1/căn 3

17 tháng 12 2018

Dự đoán điểm rơi b=c=ka. Ta có:

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM-GM: \(\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+b}+\dfrac{a}{a+c}\)

\(\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}=\dfrac{b.\sqrt{\dfrac{2k}{k+1}}}{\sqrt{\left(b+c\right).\dfrac{2k\left(a+b\right)}{k+1}}}\le\dfrac{b}{2}\sqrt{\dfrac{2k}{k+1}}.\left(\dfrac{1}{b+c}+\dfrac{\left(k+1\right)}{2k\left(a+b\right)}\right)\)

\(\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{c}{2}.\sqrt{\dfrac{2k}{k+1}}\left(\dfrac{1}{b+c}+\dfrac{k+1}{2k\left(a+c\right)}\right)\)

\(\Rightarrow VT\le\dfrac{a}{a+b}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{b}{a+b}+\dfrac{a}{a+c}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{c}{a+c}+\sqrt{\dfrac{k}{2k+2}}\)

Tìm k sao cho \(\sqrt{\dfrac{k+1}{8k}}=1\Rightarrow k=\dfrac{1}{7}\)

Do đó trình bày lại bài toán ngắn gọn như sau:

Áp dụng BĐT AM-GM:

\(VT=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{2b}{\sqrt{4\left(b+c\right).\left(b+a\right)}}+\dfrac{2c}{\sqrt{4\left(b+c\right).\left(a+b\right)}}\)

\(\le\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{a+b}+\dfrac{c}{4\left(b+c\right)}+\dfrac{c}{a+c}\)

\(=1+1+\dfrac{1}{4}=\dfrac{9}{4}\)

Dấu = xảy ra khi \(a=7b=7c=\dfrac{7}{\sqrt{15}}\)

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong

7 tháng 1 2018

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\end{matrix}\right.\)\(\Rightarrow x+y+z=xyz\)

\(\Rightarrow P=xy+yz+xz-\sqrt{x^2+1}-\sqrt{y^2+1}-\sqrt{z^2+1}\)

Khi \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow x=y=z=\sqrt{3}\Rightarrow P=3\)

Ta sẽ chứng minh \(P=3\) là giá tri nhỏ nhất của \(P\)

\(\Rightarrow BDT\Leftrightarrow xy+yz+xz-3\ge\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)

Ta có BĐT \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2\)

\(\Leftrightarrow\left(xy+yz+xz\right)^2\ge x^2y^2z^2+2xyz\left(x+y+z\right)\)\(=3\left(x+y+z\right)^2\)

Xét \(VT^2=\left(xy+yz+xz-3\right)^2=\left(xy+yz+xz\right)^2-6\left(xy+yz+xz\right)+9\)

\(\ge3\left(x+y+z\right)^2-6\left(xy+yz+xz\right)+9\)\(=3\left(x^2+y^2+z^2\right)+9\left(1\right)\)

\(VP^2\le\left(1+1+1\right)\left(x^2+y^2+z^2+3\right)=3\left(x^2+y^2+z^2\right)+9\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM. Vậy \(P_{min}=3\Rightarrow a=b=c=\frac{1}{\sqrt{3}}\)

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

30 tháng 5 2018

Ta có :\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}=\dfrac{1}{\sqrt{\left(4a^2+4ab+b^2\right)+\left(a^2-2ab+b^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2a+b\right)^2+\left(a-b\right)^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{2a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\) (Cosi)

Tương tự cộng lại ta được :

\(P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}=\dfrac{1}{\sqrt{3}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

30 tháng 5 2018

\(\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)\(\le\) \(\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\) làm thế nào hả bn ?

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)