Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
☘ Đặt \(\dfrac{a}{1+b}=x\text{ và }\dfrac{b}{1+c}=y\text{ và }\dfrac{c}{1+a}=y\)
\(\Rightarrow x+y+z=1\)
☘ Ta có:
\(P=\left(\dfrac{1}{x}-1\right)\left(\dfrac{1}{y}-1\right)\left(\dfrac{1}{z}-1\right)\)
\(=\left(\dfrac{x+y+z}{x}-1\right)\left(\dfrac{x+y+z}{y}-1\right)\left(\dfrac{x+y+z}{z}-1\right)\)
\(=\dfrac{\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\)
☘ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow P\ge\dfrac{8xyz}{xyz}=8\)
☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:
Phân tích và giải
Dễ thấy: Dấu "=" khi \(a=b=c=1\)
\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)
Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
Ta sẽ chia làm 2 bước cm:
B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :
\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)
\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)
\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)
\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)
Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))
\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)
B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)
Tự cm nhé Goodluck :v
ta có \(\dfrac{1}{\left(a+b\right)c}\le\dfrac{1}{2\sqrt{ab}c}=\dfrac{1}{2\sqrt{c}}\)tương tự ta có
\(\Sigma\dfrac{1}{\left(a+b\right)c}\le\Sigma\dfrac{1}{2\sqrt{c}}=\dfrac{\Sigma\sqrt{ab}}{2}\le\dfrac{\Sigma a}{2}\)(đpcm)
Đặt T là vế trái của BĐT, nhân vào biến đổi ta được
\(T=2+\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{a+b+c}{\sqrt[3]{abc}}-3\)(Sử dụng AM-GM rồi tách)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}-3\)
\(T\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)(đpcm)
Đẳng thức xảy ra khi a=b=c
abc=1 nên
\(P=\Sigma\dfrac{abc}{a\left(1+b\right)}=\Sigma\dfrac{bc}{1+b}=\Sigma\left(bc-\dfrac{b^2c}{1+b}\right)\)
Áp dụng Cauchy , cho ông mẫu số sau đó rút gọn rồi dụng tiếp cauchy còn ông ab +bc +ac thì như ở dưới
\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)
từ đấy ta có đpcm thôi
use a BĐT quen thuộc:
\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\ge\dfrac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)