Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với
\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)
Theo bất đẳng thức Cauchy-Schwarz ta có
\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)
\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)
Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\) \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:
** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\); \(b^3+b^3+c^3\ge3b^2c\); \(c^3+c^3+a^3\ge3c^2a\)
Cộng từng vế ba bất đẳng thức trên
** Cách 2: Giả sử \(a\le b\le c\)
Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).
Or the following SOS:
* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)
\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)
\(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Cách khác:
Áp dụng BĐT AM-GM có:
\(\frac{a^4}{b+2}+\frac{b+2}{9}\geq \frac{2}{3}a^2\)
Hoàn toàn tương tự với các phân thức khác và cộng theo vế ta có:
\(\frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq \frac{2}{3}(a^2+b^2+c^2)-\frac{a+b+c+6}{9}=2-\frac{a+b+c+6}{9}(1)\)
Cũng theo hệ thức quen thuộc của BĐT AM-GM:
$3(a^2+b^2+c^2)\geq (a+b+c)^2\Leftrightarrow 9\geq (a+b+c)^2\Rightarrow a+b+c\leq 3(2)$
Từ $(1);(2)\Rightarrow \frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq 2-\frac{3+6}{9}=1$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$