K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2021

Ta thấy: `(a-b)^2≥0`

`⇒a^2-2ab+b^2≥0`

`⇒a^2+b^2≥2ab`

`⇒a^2+2ab+b^2≥4ab`

`⇒(a+b)^2≥4ab`

`⇒a+b≥2\sqrt{ab}` $(*)$

Từ $(*)$.Suy ra: `a^3/b+bc≥2a\sqrt{ac}    (1)`

` b^3/c+ca≥2b\sqrt{ba}    (2)`

` c^3/a+ab≥2c\sqrt{cb}     (3)`

Từ `(1);(2);(3)` ta được:

`a^3/b+b^3/c+c^3/a+(ab+bc+ca)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})`  $(**)$

Từ $(*)$.Suy ra:

`a^3/b+ab≥2a^2(4)`

`b^3/c+bc≥2b^2(5)`

`c^3/b+bc≥2c^2(6)`

Từ `(4);(5);(6)` ta có:

`a^3/b+ab+b^3/c+bc+c^3/b+bc≥2a^2+2b^2+2c^2`

`⇒a^3/b+b^3/c+c^3/b≥2a^2+2b^2+2c^2-ab-bc-ca`

`⇒2a^2+2b^2+2c^2-ab-bc-ca≥a^2+b^2+c^2≥ab+bc+ca`

`⇒a^3/b+b^3/c+c^3/b≥ab+bc+ca`

`⇒2(a^3/b+b^3/c+c^3/b)≥a^3/b+b^3/c+c^3/b+ab+bc+ca` $(***)$

Từ $(**);(***)$ ta có: `2(a^3/b+b^3/c+c^3/b)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})`

`⇒a^3/b+b^3/c+c^3/b≥a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}`

NV
1 tháng 3 2021

Em có thể làm thế này cũng được:

\(\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{2}\left(a^2+ac\right)+\dfrac{1}{2}\left(b^2+ab\right)+\dfrac{1}{2}\left(c^2+bc\right)\)

\(\ge\dfrac{1}{2}.2a\sqrt{ac}+\dfrac{1}{2}.2b\sqrt{ab}+\dfrac{1}{2}.2c\sqrt{bc}\) (đpcm)

30 tháng 9 2017

ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)

\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)

\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)

\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)

30 tháng 9 2017

Áp dụng BĐT cauchy-schwarz:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

BĐT cần chứng minh tương đương :

\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)

Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)

Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)

Dấu = xảy ra khi X=Y=Z hay a=b=c

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 12 2018

cảm ơn nhiều nhé

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

24 tháng 11 2017

Lớn hơn hoặc = 1

25 tháng 11 2017

mạng có đó tương tự như z mà làm theo !!

14 tháng 5 2023

bài này khó giúp hộ em với