K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

29 tháng 7 2019

#)Giải :

Áp dụng BĐT Cauchy :

\(\left(ab+c\right)\left(bc+a\right)\le\left(\frac{ab+c+bc+a}{2}\right)^2=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)

Tương tự với các cặp còn lại, ta được :

\(\left(bc+a\right)\left(ca+b\right)\le\frac{\left(c+1\right)^2\left(a+b\right)^2}{4}\)

\(\left(ab+c\right)\left(ca+b\right)\le\frac{\left(a+1\right)^2\left(b+c\right)^2}{4}\)

Nhân theo vế :

\(\left[\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\frac{\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2}{64}\)

Mà : \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{a+1+b+1+c+1}{3}\right)^3=8\)

Do đó \(\left[\left(ab+c\right)\left(ac+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2.\frac{8^2}{64}\)

Từ đó suy ra \(\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\Rightarrowđpcm\)

28 tháng 11 2019

Áp dụng BĐT Cauchy- schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)

\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)

\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

4 tháng 11 2019

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

13 tháng 11 2017

mk học lớp 6 nên ko biết làm nhưng k cho mk nha !!!!!!!!!!!!!!!!!!!!!!

13 tháng 11 2017

bạn đánh lên google có đó

8 tháng 11 2019

dễmaf

8 tháng 11 2019

thay c=c.1=c(a+b+c)

=> ab+c=(c+a)(c+b)

lm tt cuối cùng sẽ ra

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

19 tháng 11 2019

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

19 tháng 11 2019

b thiếu đề