\(\dfrac{AB+AC-BC}{2}\)<AM&l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Bạn tự kẻ hình nhá

Trên tia đối của tia MA lấy điểm D sao cho AM=MD

Xét △ACM và △ABM có

góc BMD=góc AMC

MC=BM

AM=MD

Nên △ACM=△ABM(c.g.c)

=>AC=BD

Xét △ABD có

AB+BD>AD( theo BĐT tam giác)

Mà AC=BD

=>AB+AC>AD

Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD

=>AM<\(\dfrac{AB+AC}{2}\)(1)

Xét △ABM, ta có

AM>AB-BM (*)

Xét △ACM có

AM>AC-CM(**)

Từ (*) và (**), ta có

2.AM>AB+AC-BM+CM (mà BM+CM=BC)

=>2AM>AB+AC-BC

Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)

Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)

8 tháng 4 2021

câu trả lời của mình bị báo cáo rồi ;-;

* còn gì nữa đâu mà khóc với sầu*

28 tháng 12 2017

Ta có:

\(AD>AB-BD\) (BĐT trong \(\Delta ABD\) ) \(\left(1\right)\)

\(AD>AC-CD\) (BĐT trong \(\Delta ACD\) ) \(\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) cộng vế:

\(\Rightarrow2AD>AB-BD+AC-CD\\ \Rightarrow2AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)

Tương tự, ta có:

\(AD< AB+BD\) (BĐT trong \(\Delta ABD\) ) \(\left(4\right)\)

\(AD< AC+CD\) (BĐT trong \(\Delta ACD\) ) \(\left(5\right)\)

Từ \(\left(4\right)\left(5\right)\), cộng vế:

\(\Rightarrow2AD< AB+BD+AC+CD\\ \Rightarrow2AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)

\(AD>\dfrac{AB+AC-BC}{2}\left(cmt\right)\\ \Rightarrow\dfrac{AB+AC-BC}{2}< AD< \dfrac{AB+AC+BC}{2}\)

26 tháng 12 2017

\(AD>AB-BD\\ AD>AC-CD\\ \Rightarrow2.AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)

\(AD< AB+BD\\ AD< AC+CD\\ \Rightarrow2.AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)

12 tháng 8 2015

- CM : AM < (AB+BC):2

Tren tia AM lay D / M la trung diem AD

cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD

ta co : AD<AC+CD ( bdt trong tam giac ACD)

ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)

nen 2AM< AC+AB

--> AM < ( AC+AB):2

- cm ( AB+AC-BC):2 < AM

ta co : AB < AM+BM ( bdt trong tam giac ABM )

            AC< AM+MC ( bdt trong tam giac AMC )

==> AB+AC < AM+BM+AM+MC

----> A

14 tháng 3 2017

trong sbt toán 7 tập 2 bạn tham khảo được đó

7 tháng 6 2020

đề hình như chỉ có thế thôi bạn ạ

7 tháng 6 2020

hông phải đề cho thiếu rùi chắc lun

12 tháng 3 2018

chứng minh gì

hỏi thì phải hỏi cho hết chứ

12 tháng 3 2018

HẾT R

19 tháng 7 2017

A B C M D

Vẽ điểm D sao cho M là trung điểm của AD

\(\Delta AMB=\Delta DMC\left(c.g.c\right)\) nên \(AB=CD\)

Xét \(\Delta ACD:AD< AC+CD\) nên \(AD< AC+AB\)

Do \(AD=2AM\) nên \(2AM< AC+AB\)

Suy ra \(AM< \dfrac{AB+AC}{2}\)

22 tháng 3 2018

Giải thích chi tiết ra nhé

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...