\(\le\) 2 và a + b + c = 0. Chứng minh: a2 + b2 + c
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 4 2018

Lời giải:

Đặt \(A=a^2+b^2+c^2+abc\)

Dựa theo điều kiện \(a+b+c=0\) ta suy ra:

\(A=a^2+b^2+(-a-b)^2+ab(-a-b)\)

\(=a^2+b^2+(a+b)^2-ab(a+b)=2(a+b)^2-2ab-ab(a+b)\)

\(A=2(a+b)^2-ab(a+b+2)(1)\)

Vì \(a,b\leq 2\Rightarrow (a-2)(b-2)\geq 0\)

\(\Leftrightarrow ab+4\geq 2(a+b)\Leftrightarrow ab\geq 2(a+b-2)(*)\)

Do \(a+b+2=2-c\geq 0\) nên nhân cả hai vế của $(*)$ với \(a+b+2\) thì BĐT không đổi chiều. Tức là:

\(ab(a+b+2)\geq 2(a+b-2)(a+b+2)=2[(a+b)^2-4](2)\)

Từ \((1); (2)\Rightarrow A\leq 2(a+b)^2-2[(a+b)^2-4]=8\) (đpcm)

Dấu bằng xảy ra khi ít nhất một trong 3 số $a,b,c$ có một số bằng $2$

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

6 tháng 5 2018

từ giả thuyết suy ra : abc >0

có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0

\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)

Cộng a2+b2+cvào (1)

2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2

(a+b+c)2-4\(\ge\)a2+b2+c2

thay a+b+c=3 vào

9-4\(\ge\)a2+b2+c2

\(\ge\)a2+b2+c2

a2+b2+c\(\le\)5

6 tháng 5 2018

cauhc lop may

11 tháng 5 2017

Bài 2: 

  Đặt   \(a=3+x\)và   \(b=3+y\)thì    \(x,y\ge0\). Ta có :  \(a+b=6+\left(x+y\right)\).

Ta cần chứng minh   \(x+y\ge1\)

Ví dụ   \(x+y< 1\)thì  \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)

\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)

Điều này ngược với  giả thiết ở đề bài   \(ầ^2+b^2\ge25\)

Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)

tk mk nka !!!

24 tháng 12 2018

Do \(x,y\inℤ^+\) nên \(x,y\ge1\)

\(2^x+1=3^y\).Dễ thấy \(x\le y\).Đặt \(y=x+m\left(m\ge0\right)\) và \(m=y-x\)

Ta có: \(2^x+1=3^{x+m}\)

+Với \(x=y=1\Rightarrow2^1+1=3^{1+0}\left(TM\right)\)

+Với \(1\le x< y\Rightarrow3\le2^x+1< 2^y+1< 3^y\left(KTM\right)\)

Vậy \(x=y=1\) (p/s: không chắc cho lắm,tui mới học lớp 7 thoy)

24 tháng 12 2018

À mà bỏ cái "Đặt \(y=x+m\left(m\ge0\right)\) và m = y - x

Ta có: \(2^x+1=2^{x+m}\)"

Thay thành:"Ta có: \(2^x+1=2^y\)" .Làm xong rồi mới thấy một số chi tiết cần bỏ đi.