Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H K D
a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC
=> KCM = MBH( hai góc so le trong)
Xét tam giác HBM và tam giác KCM có:
HMB = KMC ( hai góc đối đỉnh )
MC = MC ( M là trung điểm của BC)
KCM = MBH (cmt)
Do đó : Tam giác HBM = tam giác KCM ( g-c-g)
=> HM = KM ( hai cạnh tương ứng) - đpcm
b. Xét Tam giác KBM và tam giác HCM có:
BM = CM ( M là trung điểm của BC)
BMK = CMH ( hai góc đối đỉnh)
MK = MH ( câu a)
Do đó: tam giác KBM = tam giác HCM (c-g-c)
=> BK = HC ( hai cạnh tương ứng ) - đpcm
c. Vì AB // CD nên (GT)
+ ABC = BCD ( hai góc so le trong)
+ DCB = BCA ( hai góc so le trong)
Xét tam giác ABC và tam giác DCB có:
ABC = BCD (cmt)
BC là cạnh chung
DCB = BCA (cmt)
Do đó : Tam giác ABC = tam giác DCB ( g-c-g)
=> CD = BA ( hai cạnh tương ứng ) - đpcm
a: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
góc HMB=góc KMC
DO đó ΔHMB=ΔKMC
Suy ra: HM=KM
b: Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
Suy ra: BK=CH
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
bn tự vẽ nha
a. Vì AM vuông góc với CK và AM vuôn góc với BH nên BH// KC
=> KCM = MBH( hai góc so le trong)
Xét tam giác HBM và tam giác KCM có:
HMB = KMC ( hai góc đối đỉnh )
MC = MC ( M là trung điểm của BC)
KCM = MBH (cmt)
Do đó : Tam giác HBM = tam giác KCM ( g-c-g)
=> HM = KM ( hai cạnh tương ứng)
b. Xét Tam giác KBM và tam giác HCM có:
BM = CM ( M là trung điểm của BC)
BMK = CMH ( hai góc đối đỉnh)
MK = MH ( câu a)
Do đó: tam giác KBM = tam giác HCM (c-g-c)
=> BK = HC ( hai cạnh tương ứng )
c. Vì AB // CD nên (GT)
+ ABC = BCD ( hai góc so le trong)
+ DCB = BCA ( hai góc so le trong)
Xét tam giác ABC và tam giác DCB có:
ABC = BCD (cmt)
BC là cạnh chung
DCB = BCA (cmt)
Do đó : Tam giác ABC = tam giác DCB ( g-c-g)
=> CD = BA ( hai cạnh tương ứng )