Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có: góc BAC = 180 độ - góc ABC - góc ACB
góc BAC = 180 độ - 70 độ - 30 độ = 80 độ
b) vì AD là tia phân giác của góc BAC nên ta có:
góc BAD = góc DAC = 80 độ : 2 = 40 độ
trong △ ADB có: góc ADB = 180 độ - góc ABD - góc BAD
góc ADB = 180 độ - 70 độ - 40 độ = 70 độ
trong △ HAD có: góc HAD = 90 độ - góc ADH
góc HAD = 90 độ - 70 độ = 20 độ

A B C 1 2 3 P/s : Hình ảnh chỉ có tính chất minh họa cho sản phẩm x
Theo đề ta giải được : \(\widehat{A}=100^0\)
Gọi à là tia phân giác ngoài của góc A .
\(\Rightarrow\widehat{A_2}=\widehat{A_3}=\frac{\left(180^0-100^0\right)}{2}=\frac{80^0}{2}=40^0\)
\(\Rightarrow\widehat{A_2}=\widehat{C}\left(=40^0\right)\)
Mà góc A 1 và góc C là hai góc so le trong .
=> Ax // BC ( đpcm )
Xét ΔABC có \(\hat{BAC}+\hat{ABC}+\hat{ACB}=180^0\)
=>\(\hat{BAC}=180^0-40^0-40^0=100^0\)
AD là phân giác góc ngoài tại đỉnh A
=>\(\hat{DAC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-100^0}{2}=40^0\)
Ta có: \(\hat{DAC}=\hat{ACB}\left(=40^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC