Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABD và tam giác EBD có : BD chung
góc ABD = góc EBD do BD là pg của góc ABC (Gt)
BE = BA (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> DA = DE (đn)
và góc DAB = góc DEB (đn)
góc DAB = 90
=> góc DEB = 90
=> DE _|_ BC
=> tam giác DEC vuông tại E (đn)
=> góc CDE + góc BCA = 90 (đl)
tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)
=> góc ABC = góc CDE
c, AH _|_ BC (Gt)
DE _|_ BC (câu b)
=> AH // DE (đl)
B H E A D C
Mình vẽ hơi xấu mong bạn thông cảm:)
a) \(\Delta ABD\) và \(\Delta EBD\) có :
\(BE=BA\)
\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )
\(BC:\) cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)
b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)
Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)
\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)
\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)
c) Ta có : \(AH\perp BC\), \(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE
B A D C E H K
câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC
do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,
b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên
DE //AH.
c. ta có \(KB=KA+AB=EC+EB=BC\)
mà AB=BE và góc B chung
do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.
. dễ thấy AM và AB là tia phân giác của hai góc kề bù
do đó chúng vuông góc với nhau
nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc bC
=>DE//AH
c: góc EDC+góc C=90 độ
góc ABC+góc C=90 độ
=>góc EDC=góc ABC
d: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>DK=DC và AK=EC
BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
mà DK=DC
nên BD là trung trực của KC
=>B,D,M thẳng hàng
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
B A K D H E C 1 2
a,Xét tam giác ABD và tam giác EBD
B1^=B2^(gt)
BD(cạnh chung)
BA=BE(gt)
=>tam giác ABD = tam giácEBD (c-g-c)
c,Theo câu a ta có :
BAD^=BED^=90* (góc tương ứng)
=>DE vuông góc với BC
Kết hợp với giả thiết ta có :
DE vuông góc với BC (1)
AH vuông góc với BC (2)
Từ 1 và 2 => DE//AH (từ vuông góc đến song song)