Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác CAH BẰNG tam giác COP cạnh huyền góc nhọn. suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
Bài làm
Gọi giao điểm của BD và AI là O
Xét tam giác AOB và tam giác IOB có:
^AOB = ^IOB = 00°
BO chung
^ABO = ^IBO ( do BD phân giác )
=> ∆AOB = ∆IOB ( g.c.g )
=> AO = OI
=> O là trung điểm của AI.
Mà BD vuông góc với AI tại O
=> BD là trung trực của AI
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
a: Xét ΔBDC có
BA là đường cao
BA là đường trung tuyến
Do đo: ΔBDC cân tại B
b: Ta có: ΔDBE cân tại D
mà DA là đường phân giác
nen A là trung điểm của BE
=>ΔCBE cân tại C
Xét ΔBDC và ΔEDC có
BD=ED
DC chung
BC=EC
Do đo:ΔBDC=ΔEDC
Xét ΔCKB vuông tại K và ΔCHE vuông tại H có
CE=CB
góc CBK=góc CEH
Do đo: ΔCKB=ΔCHE
c: Ta có: ΔCKB=ΔCHE
nên CK=CH và BK=HE
=>DK=DH
=>DC là đường trung trực của KH