Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A B C D F 1 2 2 1 1 2. A B H D M C
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
A B C O
Ta có: BO , CO lần lượt là phân giác ^ABC và ^ACB của \(\Delta\)ABC
=> ^OBC = \(\frac{1}{2}\)^ABC và ^OCB = \(\frac{1}{2}\)^ACB
Vì AB<AC => ^ACB < ^ABC => ^OCB < ^OBC (1)
Xét trong \(\Delta\)ABC: ^ABC + ^ACB + ^BAC = 180\(^o\)
=> ^ACB + ^ABC = 180\(^o\)- ^BAC
=> 2 . ^OBC + 2. ^OCB = 180\(^o\)- ^BAC
=> ^OBC + ^OCB = 90\(^o\)- \(\frac{1}{2}\).^BAC
Xét trong \(\Delta\)OBC: ^OBC + ^OCB + ^BOC = 180\(^o\)
=> ^BOC = 180\(^o\)- ( ^OBC + ^OCB ) = 180\(^o\)- ( 90\(^o\)-\(\frac{1}{2}\)^BAC ) = 90\(^o\)+\(\frac{1}{2}\widehat{BAC}\)> 90\(^o\)
=> ^BOC là góc tù (2)
Từ ( 1) và (2)
=> Trong \(\Delta\)BOC có: ^BOC > ^OBC > ^OCB
=> BC > OC > OB