K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ
24 tháng 12 2024

Đgnsghmdhmdhmdgmdgmydmyeyk

 

12 tháng 12 2015

a​. Xét tam giac ABM và tam giac ACM có

​AB=AC(gt)

​góc B=góc C(tam giac ABC cân)

​AM cạnh chung​

​suy ra tam giac ABM=tam giac ACM

​b. ta có:

​tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao

​suy ra AM vuông goc vs BC

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABC có 

AE/AB=AF/AC

Do đó: EF//BC

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1 2024

chưa hiểu phần song song

 

28 tháng 2 2021

a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)

b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC 

c) Tam giác EBC và FCB có 

EB = FC

\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)

BC chung

=> tam giác EBC = tam giác FCB (c.g.c)

d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)

=> tam giác IBC cân tại I => IB = IC

Xét tam giác AIB và AIC có

AI chung

AB =AC (gt)

IB=IC

=> tam giác AIB = AIC (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)

=> AI là tia phân giác của \(\widehat{BAC}\) (1)

Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac

=> AM là tia pgiac của \(\widehat{BAC}\) (2)

từ 1 và 2 => A,I,M thẳng hàng

e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)

Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)

Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB

 

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC