Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giac ABM và tam giac ACM có
AB=AC(gt)
góc B=góc C(tam giac ABC cân)
AM cạnh chung
suy ra tam giac ABM=tam giac ACM
b. ta có:
tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao
suy ra AM vuông goc vs BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABC có
AE/AB=AF/AC
Do đó: EF//BC
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)
b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC
c) Tam giác EBC và FCB có
EB = FC
\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)
BC chung
=> tam giác EBC = tam giác FCB (c.g.c)
d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)
=> tam giác IBC cân tại I => IB = IC
Xét tam giác AIB và AIC có
AI chung
AB =AC (gt)
IB=IC
=> tam giác AIB = AIC (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)
=> AI là tia phân giác của \(\widehat{BAC}\) (1)
Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac
=> AM là tia pgiac của \(\widehat{BAC}\) (2)
từ 1 và 2 => A,I,M thẳng hàng
e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)
Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)
Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )
b. ta có : AB=AC ; BM=CM
=> AM vuông góc BC
hello bạn nhỏ
cần giúp ko