K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

A B C M Xét Δ ABM và Δ ACM có :

góc BAM = góc CAM ( do AM là tia phân giác góc BAC )

Am là cạnh chung

Cạnh AB = AC ( gt)

=> Δ ABM = Δ ACM

=> Cạnh BM = CM ( hai cạnh tương ứng )

=> M là trung điểm của BC

b, Do Δ ABM = Δ ACM ( CM a )

=> góc AMB = góc AMC ( hai góc tương ứng )

mà góc AMB + góc AMC = 180\(^0\) ( hai góc kề bù )

=> góc AMB = góc AMC =180\(^0\) : 2 = 90\(^0\)

=> AM ⊥ BC

8 tháng 11 2018

ABCM Xét Δ ABM và Δ ACM có :

góc BAM = góc CAM ( do AM là tia phân giác góc BAC )

Am là cạnh chung

Cạnh AB = AC ( gt)

=> Δ ABM = Δ ACM

=> Cạnh BM = CM ( hai cạnh tương ứng )

=> M là trung điểm của BC

b, Do Δ ABM = Δ ACM ( CM a )

=> góc AMB = góc AMC ( hai góc tương ứng )

mà góc AMB + góc AMC = 18000 ( hai góc kề bù )

=> góc AMB = góc AMC =18000 : 2 = 9000

=> AM ⊥ BC

21 tháng 11 2018

A B C M 1 2 1 2

Xét tam giác ABM và tam giác ACM có: 

AM là tia phân giác của góc A hay \(\widehat{A_1}=\widehat{A_2}\) (gt)

AB = AC (gt) ; AM (cạnh chung)

  Do vậy \(\Delta ABM=\Delta ACM\) (c.g.c)

Do đó \(BM=CM\) (hai cạnh tương ứng)

          Suy ra M là trung điểm của BC

b) \(\Delta ABM=\Delta ACM\Rightarrow\widehat{M_1}=\widehat{M_2}\) hay \(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{2}\)

Lại có: \(\widehat{M_1}+\widehat{M_2}=180^o\) (kề bù).Theo t/c dãy tỉ số bằng nhau:

\(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{1}=\frac{\widehat{M_1}+\widehat{M_2}}{1+1}=\frac{180^o}{2}=90^o\)

hay \(\widehat{M_1}=\widehat{M_2}=90^o\Rightarrow AM\perp BC\) (do tia phân giác góc A cắt BC tại M)

Hình vẽ

A B C M

Bài làm

a) Vì AM là tia phân giác của \(\widehat{BAC}\) 

=> \(\widehat{BAM}=\widehat{MAC}\)

Xét tam giác ABC

Ta có: AB=AC ( giả thiết )

 \(\widehat{BAM}=\widehat{MAC}\)( Vì AM là tia phân giác của góc BAC )

         AM là cạnh chung           

=> Tam giác BAM bằng tam giác MAD ( c.g.c )

=> BM=MC ( Vì tam giác BAM=tam giác MAD )

=> M là trung điểm của BC ( đpcm )

b) Vì AM là tia phân giác của góc A

    BM=MC 

    Mà M là trung điểm của BC

=> AM vuông góc với BC. ( đpcm )

# Chúc bạn học tốt #

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu

5 tháng 2 2020

A B C H E F K x

a, Ax là phân giác của góc BAC (gt)

K thuộc Ax

KE _|_ AB (gt); KF _|_ AC (gt)

=> KE = KF (định lí)                           (1)

K thuộc đường trung trực  của BC (gt)

=> KB = KC (Định lí)  

xét tam giác EKB và tam giác FKC có : góc BEK = góc KFC = 90 

=> tam giác EKB = tam giác FKC (ch-cgv)

=> BE = CF (đn)

a ) Ta có Ax là đường trung trực của tam giác ABC => Ax là đường trung trực của tam giác ABC

Xét tam giác BEK vuông tại E và tam giác CFK vuông tại F ta có :

BK = KC ( cmt )

BKE = CKF ( đối đỉnh )

=> Tam giác BEK = tam giác CFK 

=> BE = CF ( 2 cạnh tương ứng )

mik chỉ làm đc câu a thoi maf hình như đề bị sai á

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng