Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D F
D)VÌ\(\Delta ADF=\Delta EDC\left(cmt\right)\)
\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)(HAI GÓC TƯƠNG ỨNG)
TA CÓ \(\widehat{ADE}+\widehat{EDC}=180^o\left(KB\right)\)
THAY \(\widehat{ADE}+\widehat{ADF}=180^o\)
\(\widehat{FDE}=180^o\)
=> BA ĐIỂM F ,D,E THẲNG HÀNG
a, Xét tam giác ABD và AED cs:
AB=AE(gt)
góc BAD=EAD(p.g)
AD: cạnh chung
=> tam giác ABD=AED(c.g.c)
b, từ a=> góc ABD=AED(2 góc t/ứng)
Xét tam giác ABC và AEF cs:
góc ABD=AED(cmt)
AB=AE(gt)
góc A: góc chung
=> tam giác ABC=AEF(g.c.g)
c, từ b=> AC=AF(2 cạnh t/ứng)
Xét tam giác FAM và CAM cs:
AF=AC(cmt)
góc FAM=CAM (gt)
AM: cạnh chung
=> tam giác FAM=CAM(c.g.c)
=>FM=MC(2 cạnh t/ứng)
=> DM là đường trung tuyến của đt FC
Xét tam giác DFC cs:
DM là đường trung tuyến
CN là đường trung tuyến ( vì DN=NF)
Mà DM và CN giao nhau tại G
=> G là trọng tâm của tam giác DFC
=> CG/GN=2( t/c trọng tâm trg tam giác)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đo:ΔABD=ΔAED
b: Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
c: Ta có: ΔAFC cân tại A
mà AD là đường phân giác
nên AD là đường cao
d: Ta có: ΔDBF=ΔDEC
nên DF=DC