K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Ta có:

\(\widehat{EDH}=\widehat{DHA}=90^0\) mà 2 góc này ở vị trí so le trong nên DE//AF

Lại có:

\(\widehat{EFH}=\widehat{DHA}=90^0\)mà 2 góc này ở vị trí đồng vị nên EF//DH

Xét △FEH và △DHE có:

\(\widehat{FEH}=\widehat{DHE}\)(so le trong)

EH chung

\(\widehat{EHF}=\widehat{HED}\)(so le trong) ⇒△FEH =△DHE (gcg) ⇒FE=DH (đpcm) b) Xét △EAF có: \(\widehat{EAF}+\widehat{AFE}+\widehat{FEA}=180^0\Rightarrow\widehat{EAF}+\widehat{FEA}=90^0\) Lại có: \(\widehat{EAF}+\widehat{HAB}=90^0\) \(\Rightarrow\widehat{EAF}+\widehat{FEA}=\)\(\widehat{EAF}+\widehat{HAB}=90^0\) \(\Rightarrow\widehat{FEA}=\widehat{HAB}\) Ta có: EF=DH (câu a); DH=AH (gt) ⇒EF=AH Xét △EFA và △AHB có: \(\widehat{FEA}=\widehat{HAB}\left(cmt\right)\) EF=AH (cmt) \(\widehat{EFA}=\widehat{AHB}\left(=90^0\right)\) ⇒△EFA = △AHB (gcg) ⇒EA=AB (đpcm) ⇒△ABE vuông cân tại A \(\Rightarrow\widehat{EAB}=90^0;\widehat{AEB}=\widehat{ABE}=45^0\) c)M là điểm nằm trên đường trung trực của DE ⇒ME=MD⇒△MED cân tại M (đpcm) Gọi I là trung điểm của DE ⇒IM⊥DE Lại có:DB⊥DE ⇒IM//DB ⇒\(\left\{{}\begin{matrix}\widehat{IMD}=\widehat{MDB}\\\widehat{EMI}=\widehat{MBD}\end{matrix}\right.\)(1) Mà △MED cân tại M có IM là đường trung trực=> MI cũng là đường phân giác =>\(\widehat{EMI}=\widehat{IMD}\left(2\right)\) Từ (1) và (2) =>\(\widehat{MDB}=\widehat{MBD}\)=> △DMB cân tại M (đpcm)

Bài 1: Cho ΔABCΔABC có Aˆ=900A^=900, AB > AC. Vẽ đường cao AH của tam giác ABC. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF⊥AHEF⊥AH tại F.a) CMR: EF = DH.b) CMR: AB = AE và tính số đo các góc của tam giác ABE.c) Đường trung trực của đoạn DE cắt BE ở M. Chứng minh các tam giác DME cân và DMB cân.d) Tính AHMˆAHM^ (thừa...
Đọc tiếp

Bài 1: Cho ΔABCΔABC có Aˆ=900A^=900, AB > AC. Vẽ đường cao AH của tam giác ABC. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF⊥AHEF⊥AH tại F.
a) CMR: EF = DH.
b) CMR: AB = AE và tính số đo các góc của tam giác ABE.
c) Đường trung trực của đoạn DE cắt BE ở M. Chứng minh các tam giác DME cân và DMB cân.
d) Tính AHMˆAHM^ (thừa nhận EHAˆ+EHBˆ+BHAˆ=3600EHA^+EHB^+BHA^=3600)
Bài 2: Cho tam giác đều ABC. Trên tia AC lấy điểm D (AD>AC) vẽ tam giác đều ADE (B, E thuộc hai nửa mặt phẳng đối nhau bờ AD). Tia EC cắt BD ở M.
a) CMR: BD = CE.
b) Trên tia ME lấy F sao cho MF = MD. CMR tam giác MDF đều.
c) Chứng minh ME = MD + MA, MA = MB + MC
Bài 3: Cho tam giác ABC có Aˆ>1200A^>1200. Phía ngoài tam giác ABC, vẽ các tam giác đều ABD, ACE. Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F.
a) CMR: AD = EF
b) Chứng minh tam giác BFC đều (thừa nhận BACˆ+CAEˆ+EADˆ+DABˆ=3600BAC^+CAE^+EAD^+DAB^=3600)

giải nhanh giúp mình nhé, cảm ơn ạ!

0
10 tháng 5 2016

Bài 1:

a) Xét 2 tam giác vuông BAH và tg vuông DAH, có:

 AH là cạnh chung

 HB = HC

\(\Rightarrow\Delta BAH=\Delta DAH\) (2 cạnh góc vuông)

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

19 tháng 7 2019

Xét \(\Delta BAD\)(\(\widehat{A}=90^o\))và \(\Delta BHD\)(\(\widehat{H}=90^o\))có:

\(\widehat{ABD=\widehat{HBD}}\)(gt)

BD: cạnh chung

=> \(\Delta ABD=\Delta HBD\left(CH-GN\right)\)

=> AB=BH; AD=DC (2 cạnh t/ứng)

và \(\widehat{BDA=\widehat{BDC}}\)(2 góc t/ứng)

Xét \(\Delta ABH\)cân tại B(vì AB=BH[cmt]) có : BD là đường p.g

=> B là điểm thuộc đường trung trực AH (1)

Xét \(\Delta ADH\)cân tại D(vì AD=DH(cmt)) có: DB là đường p.g ( vì \(\widehat{BDA=\widehat{BDC}}\))

=> D là điểm thuộc đường trung trực AH (2)

Từ (1) và (2)=> BD là trung trực của đt AH

19 tháng 7 2019

B F A E K D C H I

+ Xét \(\Delta ABD\)vuông tại A và \(\Delta HBD\)vuông tại H ( vì \(DH\perp BC\))

Có : BD là cạnh chung

        \(\widehat{ABD}=\widehat{HBD}\)( Vì BD là p/g của góc B)      => \(\Delta ABD=\Delta HBD\)( canh huyền-góc nhọn)

                                                                                       => AB = HB

+ Gọi I là giao điểm của BD và AH

CM đc : \(\Delta ABI=\Delta HBI\)(c-g-c)

=> IA = IH ( 2 cạnh tương ứng)    (1)

và \(\widehat{BIA}=\widehat{BIH}\)( 2 góc t.ư)

Vì \(\widehat{BIA}=\widehat{BIH};\widehat{BIA}+\widehat{BIH}=180^o\)( 2 góc k.bù)

=> \(\widehat{BIA}=\widehat{BIH}=\frac{180^o}{2}=90^o\Rightarrow BD\perp AH\)tại I (2)

Từ (1),(2) => BD là trung trực của đth AH