Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đo: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
b: Xét ΔAMK và ΔDMF có
\(\widehat{MAK}=\widehat{MDF}\)
MA=MD
\(\widehat{AMK}=\widehat{DMF}\)
Do đo: ΔAMK=ΔDMF
Suy ra: MK=MF
hay M là trung điểm của KF
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét ΔAMB và ΔDMC có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
b: Xét ΔCBD có
M là trung điểm của BC
F là trung điểm của DC
Do đó: MF là đường trung bình
=>MF//BD
=>MF//AC
hay MK//AC
Xét ΔBAC có
M là trung điểm của BC
MK//AC
DO đó: K là trung điểm của BA
Xét tứ giác BKCF có
BK//CF
BK=CF
Do đó: BKCF là hình bình hành
Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường
hay M là trung điểm của KF
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
a) Xét ΔBEAΔBEA và ΔDCAΔDCA có:
AE = AC (gt)
ˆBAE=ˆDACBAE^=DAC^ (đối đỉnh)
AB = AD (gt)
⇒ΔBEA=ΔDCA⇒ΔBEA=ΔDCA (c.g.c)
⇒BE=CD⇒BE=CD (2 cạnh t/ư)
b) Ta có: BM=12BEBM=12BE (M là tđ)
DN=12CDDN=12CD (N là tđ)
mà BE = CD ⇒BM=DN⇒BM=DN
Vì ΔBEA=ΔDCAΔBEA=ΔDCA (câu a)
⇒ˆEBA=ˆCDA⇒EBA^=CDA^ (so le trong)
hay ˆMBA=ˆNDAMBA^=NDA^
Xét ΔABMΔABM và ΔADNΔADN có:
AB = AD (gt)
ˆMBA=ˆNDAMBA^=NDA^ (c/m trên)
BM = DN (c/m trên)
⇒ΔABM=ΔADN(c.g.c)⇒ΔABM=ΔADN(c.g.c)
⇒ˆBAM=ˆDAN⇒BAM^=DAN^ (2 góc t/ư)
mà ˆDAN+ˆNAB=180oDAN^+NAB^=180o (kề bù)
⇒ˆBAM+ˆNAB=180o⇒BAM^+NAB^=180o
⇒M,A,N⇒M,A,N thẳng hàng.
ABCI
a) Xét tam giác ABC và tam giác DMC có :
BC = CM ( GT )
Góc ACB = góc MCD ( 2 góc đối đỉnh (
AC = CD ( GT )
=> tam giác ABC = tam giác DMC ( c - g - c )
b) Theo ý a , ta có : tam giác ABC = tam giác DMC
=> Góc BAD = góc ADM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> MD // AB ( dấu hiệu )
c) Nghĩ nốt đã
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//DC
b: Xét ΔKMB và ΔFMC có
góc MBK=góc MCK
MB=MC
góc KMB=góc FMC
=>ΔKMB=ΔFMC
=>MK=MF
=>M là trung điểm của KF