Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3=3abc< =>a^3+b^3+c^3-3abc=0< =>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
vì a,b,c là độ dài 3 cạnh của tam giác ABC => a,b,c > 0 => a+b+c > 0
=>\(a^2+b^2+c^2-ab-bc-ac=0=>\frac{1}{2}.2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
=>(a-b)2+(b-c)2+(c-a)2=0
tổng 3 bt ko âm=0 <=> chúng đều = 0
<=>a-b=b-c=c-a=0
<=>a=b=c
<=>tam giác ABC là tam giác đều
vậy góc ABC=600
chào bạn còn nhớ mình ko bai nay o vong 15 luyen thi phai ko. Bạn phân tích từ số thành nhân tử
B=(a+b+c)(a^2 + b^2 + c^2 -ab-bc-ac)/a^2 +b^2 +c^2 -ab-bc-ac
suy ra B=a+b+c. suy ra B=2016
Áp dụng bất đẳng thức cosi ta được
\(a^3+b^3+c^3\ge3abc\)
Dấu = xảy ra khi a = b = c
Hay tam giác ABC đều
=> Góc ABC = 60°
\(P=\frac{a^3b^2c^2}{ab+a^2bc+abc}+\frac{ab^2c}{bc+b+abc}+\frac{abc^2}{ac+c+1}\)
\(=\frac{ }{ab\left(1+ac+c\right)}+\frac{ }{b\left(c+1+ac\right)}+\frac{ }{ac+c+1}\)