Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
abc - cba = ( a x 100 + b x 10 + c ) - ( c x 100 + b x 10 + a ) = a x 99 + b x 10 - c x 99 + b x 10 = a x 99 - c x 99
Vì a x 99 chia hết cho 11 , c x 99 chia hết cho 11 nên abc - cba cũng chia hết cho 11
2
a ) abcdeg = ab x 10000 + cd x 100 + eg = a x 9999 + cd x 99 + ( ab + cd +eg )
Vì a x 9999 chia hết cho 11 , cd x 99 chia hết cho 11 , ab + cd +eg chia hết cho 11 ( theo đề ) nên abcdeg cũng chia hết cho 11
b ) CÂU NÀY MÌNH CHƯA NGHĨ RA NHA
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
cách 1
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
cách 2
ta có: abc= 100a + 10b + c. Nhận thấy abc chia hết cho 27 nên nó chia hết cho 3 và 9 như vậy tổng 3 số a+b+c= 9n ( với n nguyên )
Như vậy:khi đảo vị trí thì
bca= 100b+ 10c+a nhưng tổng (a+b+c) vẫn không đổi. tức là (a+b+c)=9n
vì vậy bca vẫn chia hết cho 27
bn thích chọn cách nào thì chọn nhưng nhớ k mk nha!!! *,~
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc}⋮3;\overline{abc}⋮9\)
\(\Rightarrow\)\(\left(a+b+c\right)⋮3;\left(a+b+c\right)⋮9\)
\(\Rightarrow\left(a+b+c\right)⋮27\)
\(\Rightarrow\overline{bca}⋮27\)
a*b*c chia hết cho 27
Suy ra a*b*c chia hết cho 3
Vì 3 là số nguyên tố
Suy ra a chia hết cho 3. (1)
b chia hết cho 3. (2)
c chia hết cho 3. (3)
Từ (1),(2) và (3) suy ra b.c.a chia hết cho 3.3.3=27
Vậy b. c.a chia hết cho 27