\(\widehat{BAC}\)=\(30^0\). Kẻ đường cao B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường trung trực của BC

=>HB=HC

Xét ΔABH và ΔACH có

AB=AC
BH=CH

AH chung

Do đó: ΔABH=ΔACH

b: góc ABK=90-30=60 độ

Xét ΔBAK có BA=BK

nên ΔBAK cân tại B

mà góc ABK=60 độ

nên ΔBAK đều

7 tháng 8 2019

Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

29 tháng 4 2017

Câu C mình ghi thiếu: Chứng minh \(\Delta\) ADK cân từ đó chứng minh D là trung điểm của EK

8 tháng 5 2017

hình pn tự vẽ nka

a) Xét \(\Delta ABD\)\(\Delta EBD\)

BA = BE (giả thiết)

góc \(ABD=EBD\) ( phân giác góc B)

BD cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) ( hình như đề câu b sai hay s ó pn)

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ

1 tháng 8 2019

#)Giải :

a) Áp dụng định lí py - ta - go :

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)

b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)

\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)

\(\Rightarrow\Delta BDC\)  cân tại B

1 tháng 8 2019

A C B D E M

Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36

=> AC = 6

b) Xét t/giác ABC và t/giác ABD

có: AB : chung

 \(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)

 AC = AD (gt)

=> t/giác ABC = t/giác ABD (c.g.c)

=> BC = BD (2 cạnh t/ứng)

=> t/giác BDC cân tại B

c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)

                      mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)

                    => \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)

AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)

     mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)

=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)

Từ (1) và (2) => BM = CM

d) Xét t/giác AMB và t/giác EMC

có: AM = ME (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)

 BM = CM (cmt)

=> t/giác AMB = t/giác EMC (c.g.c)

=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)

Tương tự, xét t/giác BME và t/giác CMA 

=> t/giác BME = t/giác CMA (c.g.c)

=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)

Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)

=> \(\widehat{CEM}+\widehat{BEM}=90^0\)

=> \(\widehat{BEC}=90^0\)